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Abstract

WireGuard is a formally verified secure tunneling protocol
written and designed with the Linux Kernel as its primary op-
erating context. Several design considerations at the protocol
layer were considered in order to make it safe and simple to
implement into an operating system kernel. In implementing
WireGuard for Linux, several techniques are used for achiev-
ing performance and for doing cryptographic operations at
the struct net_device level. This paper describes those
techniques and protocol considerations, including a discussion
of GSO, queueing, zero-copy, crypto API, FPU batching, multi-
core algorithms, and socket routing semantics.
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Preliminary
This paper presupposes quite a bit of knowledge of what Wire-
Guard is, since other papers have covered that in detail already;
[7] is readily available. This paper outlines a hodgepodge of
kernel-specific implementation details relating to WireGuard,
and is the textual companion of an in-person talk at Netdev
2.2.

Protocol Considerations
WireGuard is a secure networking tunnel written and designed
originally for the Linux kernel [7]. While many protocols
are developed by cryptographers in a vacuum, the WireGuard
protocol was designed from the ground up to be implementable
in a kernel setting, in a way that naturally yields defense-in-
depth coding practices. While the cryptography is custom-
tailored for WireGuard’s needs, it is based on conservative
cryptographic principles, and has been formally verified [8]
using Tamarin [1].
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Memory Allocation
One objective of the protocol is to avoid allocations except at
configuration time. WireGuard therefore allocates all the state
memory it needs for the device and its peers during Netlink
configuration. However, this imposes additional restrictions
on the protocol: because no new memory can be allocated,
existing memory must only be modifiable in relation to au-
thenticated data. This in turn means that every packet must
be authenticated, even the first, motivating the development
of the Noise_IKpsk2 [10] 1-RTT handshake, which includes
a static-static Diffie-Hellman calculation in the first message
of the protocol, among others. However, putting a static-static
Diffie-Hellman calculation in the first message opens the pro-
tocol up to CPU exhaustion denial of service attacks, and so
a novel cookie mechanism, building on that of DTLS and
IKEv2, is used, enabling WireGuard to fend off attacks with-
out modifying statically allocated state memory. Without close
coordination between the cryptography and the kernel con-
siderations, the implementation would be required to utilize
programming methods such as garbage collection and caches,
which WireGuard entirely avoids.

Independent Handshakes
While older solutions such as IPsec placed the key exchange
outside the kernel, WireGuard has chosen to collapse the key
exchange and the transport layer into one extremely simple
state machine. This greatly reduces the overall complexity, by
removing the need for elaborate IPC. It also allows for sleek
interactions between key exchange and transport, such as the
timer state machine described in [7]. Through use of the Noise
Protocol Framework [10], WireGuard achieves a very simple
1-RTT handshake using Curve25519 [5], an extremely fast el-
liptic curve. Because the handshake is only 1-RTT and because
it is computationally inexpensive (in comparison to IKEv2, for
example), it is possible to achieve forward secrecy by simply
doing a new handshake with a session entirely independent
from the prior session. This also enables a much simpler state
machine and yields naturally to showing userspace a “state-
less” interface, in which a device is either configured or not
configured, but without any concept of a “connection”.

Flow-agnostic Multicore Crypto
Traditionally, most network-layer encryption is per-flow
single-threaded, in order to preserve packet ordering. While
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this delivers overall performance when many flows from many
users are made in parallel, it performs poorly for large file
downloads or for bandwidth intensive real time communica-
tions, such as video conferencing. WireGuard attempts to gain
the best of both worlds—fast single flow performance and fast
multiflow performance, while maintaining low latency.

Serial Queue, Parallel Queue

Each WireGuard device has global encryption and decryp-
tion queues. Each WireGuard peer has its own transmis-
sion and receptions queues. For outbound packets, via
ndo_start_xmit, packets are first assigned a nonce,
which also doubles as a sequence number, and are placed
in the per-peer queue with an atomic flag set to “uncrypted”. It
is then added to the per-device queue. Next a kernel thread is
started using queue_work_on to explicitly choose the CPU
in round-robin. This thread processes items in the per-device
queue until it is empty (which may never occur), and after each
item is encrypted, it marks the packet flag as “crypted”. It then
calls queue_work_on on another work item, always set to
run on the same per-peer transmission CPU, which simply
dequeues items from the per-peer queue and transmits them,
returning when there are either no more items to dequeue
or when it attempts to dequeue an item that is in the state
“uncrypted”. Like this, packets are encrypted using all cores
at once, but retain their order for their eventual non-parallel
transmission. The ingress flow is more or less the same, with
sequence number checking occurring at the end of the pro-
cess, rather than the egress flow’s nonce assignment at the
beginning.

While this basic design is simple and achieves its goals,
there are multiple sub-problems in implementing it. One op-
tion would be to design the parallel per-device queue by having
one individual queue per CPU, and simply distributing pack-
ets round-robin amongst each per-CPU queue. This, in turn,
would lend itself well to implementing the basic queue data
structure using a linked list, since it is trivial to write a lock-
free multi-producer single-consumer queue. However, a con-
siderable downside is that it means the scheduler must visit all
per-CPU queues in order to make consistent forward progress.
If the scheduler lingers on one CPU, the per-peer transmission
queue may very well be waiting to transmit packets that have
not yet been encrypted on another CPU. In experiments with
this approach, this was a massive source of latency.

Therefore a different approach was taken. Instead of hav-
ing one queue per CPU, a global queue is used. This means
the queue must be implemented using a ring buffer, because
lock-free ring buffer algorithms are more efficiently imple-
mented than lock-free linked-list queues. At the time of writ-
ing the ptr_ring structure is used, which does in fact use
producer and consumer spinlocks, work is ongoing to make
this lock-free. However, even with the spinlocks, performance
is massively superior to the queue-per-CPU approach. If the
scheduler is focused on one particular CPU, forward progress
is still made on the per-device queue at large, and thus trans-
mission remains low-latency and the latency does not increase
in relation to the number of CPUs, as with a per-CPU queue.

Figure 1: A ring of packet bundles, each of which is a linked
list of GSO pieces.

Generic Segmentation Offload Batching
Whether the per-device queue uses a spinlock or is lock-free,
contention is still always an issue, which means dequeueing
and enqueueing must be batched. Furthermore, packets that
arrive on a particular CPU often share similar caches, and
if encryption must occur on a different CPU, it is best if the
migration happens once and at the same time. It is thus evident
that packets must be batched together in groups before they
are added to the aforementioned queues. So it is question of
how large should the batches be and at what interval should
packets be bunched and released.

Fortunately, we do not have to actually answer that question
or agonize over latency semantics of manual bunching. Instead
we mark the net_device as supporting hardware based
generic segmentation offload. This means that rather than
pass the driver MTU-sized packets, we instead receive a very
large “super-packet”, usually around 65 kilobytes. We can
then chunk that up itself, using skb_gso_segment, into
MTU sized chunks, and group these packets together into a
linked list. Each separate linked list of packet bunches is then
put in our ring buffer, resulting in a ring of linked lists, as
shown in figure 1.

On the receiving end, generic receive offload (GRO) will
fit in evenly to this model, with clusters of packets from
GRO being decrypted in bundles. This enables WireGuard to
benefit from the generally fast single-threaded performance
of modern processors while still receiving the overall speed
boost from parallelism. Future work will involve modifying
skb_gso_segment to take a dynamic MTU parameter, so
that WireGuard can handle path MTU on a per-peer basis.

Context Batching
Due to the above semantics, it is possible to take care of all the
packet transmission and reception in a single context, as well
as all the encryption and decryption in a single context. For
encryption and decryption, WireGuard makes heavy use of
AVX instructions, using extremely high speed cryptographic
primitives [2]. These require the use of the kernel FPU. While
the ordinary crypto API generally turns the FPU on and off
once per operation, we can simply turn it on and off once per
the entire life cycle of the thread work item, saving valuable



CPU time ordinarily wasted for saving and restoring large
vector registers.

Similarly for transmission and reception, we change into
softirq context for the entire run of draining the per-peer queue.
For reception, this enables us to call netif_receive_skb
instead of netif_rx, which means we do not queue up pack-
ets to be delivered, but simply deliver them immediately. This
causes the call to netif_receive_skb to block, slowing
the ongoing dequeueing of packets. By not introducing an-
other queue by way of netif_rx, we cause the per-peer
queue to fill up instead when reception is a bottleneck. This
then causes the enqueueing of new packets to fail when the
per-peer queue is full. Counterintuitively, this is actually ben-
eficial; it naturally pushes back on the per-device decryption
queue by not adding more work to be done when the per-peer
queue is full, lowering the amount of decryption work that
would be discarded anyway later on in the pipeline.

Queue Lengths
At the moment, each queue is of a fixed length, but future
work involves either changing this to use struct dql, in
order to have dynamic queue lengths, or moving the entire
net_device over to use qdiscs and in that way be able to
employ fq_codel [9]. Early prototypes of WireGuard actu-
ally did make extensive use of subqueues, giving a subqueue
to each peer, so that they could be started and stopped sep-
arately. However, since fq_codel already classifies based
on flow and WireGuard’s strong IP binding via the “allowed
IPs” concept [7], a single queue will likely yield appropriate
per-peer fairness, albeit with slightly different characteristics.

Granular Error Reporting
Being queueless, however, does have advantages: by skipping
the qdisc subsystem, there is simply less code in the critical
path, which usually is favorable from a performance perspec-
tive, and, more importantly, allows the WireGuard driver to
return errors directly to userspace. For example, if a packet is
transmitted by userspace to a peer for which there is no end-
point, the device can directly return EDESTADDRREQ, which
then translates to an informative message to the user. While
ICMP is also used—and is necessary in the case of forwarded
packets that do not originate from userspace—the possible
error codes from ICMP are less granular.

Socket Socket Routing
WireGuard does not enable the user to bind to a particular
address. Instead, the user provides a listen port, which is then
bound on all addresses. The underlying reasoning is that if
a packet makes it to WireGuard and authenticates correctly
via the cryptographic authenticator, Poly1305 [3], it does not
matter by which interface or IP the packet entered. In fact,
the means of ingress are most certainly less trustworthy than
whether or not the authentication tag is correct. Poly1305
has a security proof [4], whereas IP packet addressing and
physical cabling is manipulable by a variety of means.

However, since WireGuard does not allow the user to choose
a bind address, it must determine the source address of packets
automatically by itself. Additionally, WireGuard will reply to

packets using the ingress source address as the egress desti-
nation address, which means the source address needed for a
new possible destination is potentially dynamically changing.

When a packet arrives and is authenticated, the source ad-
dress, destination address, and ingress interface of that packet
are stored. When it comes time for transmission, the three
pieces of information are used to construct a flowi for de-
termining a routing table entry and final source address of the
outgoing packet.

The source address corresponding to the ingress packet’s
destination is first checked to see whether it belongs to any
interface on the system. While it may make sense to check
instead of it belongs to strictly the WireGuard interface, many
systems receive packets on one interface and transmit on an-
other, or make use of dummy interfaces; thus we expand the
check to be for all interfaces. If the source address does not
belong to any interface, it and the egress interface are reset to
zero, which indicates that the default routing choice should
be made. Otherwise, it and the egress interface are used as
values in the flowi, which is then passed to the routing table
subsystem to find a route. If this fails, the failure propagates up
and the packet is dropped only if either the egress interface or
source address passed were zero. Otherwise, the two fields are
zeroed, and the subsystem is re-queried. This helps keep the
source address consistent as different interfaces come and go,
which may share addresses or routes. For example, this logic
does the right thing when switching from Ethernet to WiFi
and back within the same network segment. At the same time,
it does the right thing in complicated BGP routing scenarios,
where packets may arrive and depart through drastically dif-
ferent routes. In this way, the socket routing is sticky, but is
not overly sticky, in that it keeps up with network changes.

This sticky socket routing interface is at a middle point
between being connection-oriented and connection-less, and
maps in solidly with the overall design goal of appearing to
be stateless to userspace, while perfectly managing all state
transparently and making the most precise decisions.

Network Namespaces and Policy Routing
Like most Linux network interfaces, WireGuard integrates
into the network namespace infrastructure. WireGuard does
something a bit special with namespaces, though. When a
WireGuard interface is created, it remembers the namespace
in which it was created. Later, the interface can be moved to
new namespaces, but it will still remember the namespace in
which it originated.

WireGuard uses a UDP socket for actually sending and
receiving encrypted packets. This socket always lives in the
original birthplace namespace of the interface, not any new
namespace to which the interface might be moved. This has
several useful properties. One can create a WireGuard inter-
face in one namespace, move it to another, and have clear-
text packets sent from the latter namespace be transmitted
encrypted through a UDP socket in former namespace. The
most obvious usage of this is to give containers WireGuard
interfaces as their sole means of networking. A less obvious
usage is to use this characteristic of WireGuard for redirect-
ing all ordinary Internet traffic over WireGuard, by having a
WireGuard interface be the only interface in the init_net



namespace, with its UDP socket living in a newly created
“physical” namespace to where the actual physical Ethernet
interfaces are moved.

The downside of this approach is that moving physical
interfaces between namespaces means bringing them down
and killing and restarting daemons that might be using them
directly, such as wpa_supplicant ownership of wlan0.
There are two current approaches for routing Internet without
namespaces.

The first is by adding an explicit route to the tunnel endpoint
using the physical interface and then overriding the default
route with the WireGuard interface. The second is by using
policy routing. WireGuard allows users to set the fwmark
on outgoing encrypted UDP packets. This can then be used
with ip-rule and its suppress_prefixlength 0 di-
rective to achieve the same thing as overriding the default
route, but more reliably. The fwmark can also be used by
Netfilter for a variety of uses, such as implementing a so-called
“kill-switch” by disallowing packets that are not from either
the WireGuard interface or are without the fwmark.

While this can be automated with a good deal of suc-
cess, it is however complicated and a bit cumbersome to
use. And routing table rules are not bound to any interface,
which means when the WireGuard interface is deleted, these
rules must manually be cleaned up. A proposed alternative
is not_oif [6], a member of flowi and a corresponding
socket option, SO_NOT_OIF, which would be a hint to the
routing table to return routes that assume the passed interface
index does not exist. This would eliminate circular routing and
would allow for very basic and straight-forward routes that
actually do directly what the user intended, without having to
follow a roundabout process of applying routing rule policies.

Crypto API Improvements
WireGuard has a fixed cipher suite. It is a throughly designed
protocol, rather than a generalized pluggable architecture. This
has numerous security benefits and is considered by modern
standards to be a best practice. However, it is a considerable
departure from the heavily abstracted crypto API currently in
use in the kernel. WireGuard also endeavors to use formally
verified implementations of primitives, work for which is on-
going. The FPU context batching, too, requires semantics
outside the current crypto API. WireGuard tries to avoid allo-
cations, and the Noise handshake does many encryptions with
differing keys; the current crypto API does not do well with
changing keys and avoiding allocations. And finally, Wire-
Guard focuses on using extremely simple and direct interfaces,
instead of bug-prone heavy boilerplate code. For these reasons,
WireGuard currently uses its own internal crypto API with its
own primitives, but it is planned to merge these improvements
back into the crypto API in order to improve the entire kernel
crypto ecosystem.

Netlink and In-Band Messaging
WireGuard uses Generic Netlink for configuration between
the user and the kernel. However, between peers themselves,
all IP assignment and configuration is static. There is no push
configuration, nor should such a thing be in the kernel. Wire-

Guard’s key exchange and configuration model is intentionally
out-of-band.

However, it is sometimes useful to send messages in-band
before IPs are known, directly to a peer, addressable by the
peer’s public key. There are two possible ways to achieve this
moving forward. One would be to implement a Netlink com-
mand to send a buffer directly to a peer’s public key, not encap-
sulated in an IP packet. On the receiving end, a Netlink mul-
ticast event would be triggered. Alternatively, a new address
family, AF_WIREGUARD could be created, where sendto
and recvfrom take a struct sockaddr_wg for a 32-
byte peer public key. While this has the benefit of being more
elegant, adding a new address family must be very carefully
considered. And since this is meant to be used for application-
specific configuration, not for general data transfer, perhaps
Netlink is more appropriate. However, using an address family
would allow for all kinds of interesting and useful unforeseen
uses of WireGuard.

Concluding Remarks
Designing a tunneling protocol from the ground up for the
facilities of the Linux kernel leads to interesting and unique
possibilities, excellent performance, and stronger security se-
mantics. This talk addresses some of those kernel puzzles that
were part of the design process.
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