Noise Explorer:
Fully Automated Modeling and Verification
for Arbitrary Noise Protocols

Nadim Kobeissi Karthikeyan Bhargavan
INRIA Paris INRIA Paris
nadim.kobeissi@inria.fr karthikeyan.bhargavan@inria.fr

August 23, 2018

Abstract

The Noise Protocol Framework, introduced recently, allows for the design and construction of se-
cure channel protocols by describing them through a simple, restricted language from which complex
key derivation and local state transitions are automatically inferred. Noise “Handshake Patterns”
can support mutual authentication, forward secrecy, zero round-trip encryption, identity hiding and
other advanced features. Since the framework’s release, Noise-based protocols have been adopted by
WhatsApp, WireGuard and other high-profile applications.

We present Noise Explorer, an online engine for designing, reasoning about and formally verifying
arbitrary Noise Handshake Patterns. Based on our formal treatment of the Noise Protocol Frame-
work, Noise Explorer can validate any Noise Handshake Pattern and then translate it into a model
ready for automated verification. We use Noise Explorer to analyze 50 Noise Handshake Patterns.
We confirm the stated security goals for 12 fundamental patterns and provide precise properties for
the rest. We also analyze unsafe Noise patterns and discover potential attacks. All of this work is
consolidated into a usable online tool that presents a compendium of results and can parse formal
verification results to generate detailed-but-pedagogical reports regarding the exact security guar-
antees of each message of a Noise Handshake Pattern with respect to each party, under an active
attacker and including malicious principals. Noise Explorer evolves alongside the standard Noise
Protocol Framework, having already contributed new security goal verification results and stronger
definitions for pattern validation and security parameters.

1 Introduction

Popular Internet protocols such as SSH and TLS use similar cryp-

tographic primitives: symmetric primitives, public key primitives,
IK - one-way hash functions and so forth. Protocol stages are also
similarly organized, usually beginning with a authenticated key
exchange (AKE) stage followed by a messaging stage. And yet,
the design methodology, underlying state machine transitions and
—e,es,8,88 key derivation logic tend to be entirely different between protocols
with nevertheless similar building blocks. The targeted effective

— S

— e, ee, s€
security goals tend to be similar, so why can’t the same method-
ology be followed for everything else?
Figure 1: An example Noise Standard protocols such as those mentioned above choose a
Handshake Pattern, IK. specific set of key exchange protocols to satisfy some stated use-

cases while leaving other elements, such as round trips and (noto-
riously) cipher suites up to the deployer. Specifications use protocol-specific verbose notation to describe
the underlying protocol, to the extent that even extracting the core cryptographic protocol becomes
hard, let alone analyzing and comparing different modes for security.

Using completely different methodologies to build protocols that nevertheless often share the same
primitives and security goals is not only unnecessary, but provably dangerous. The Triple Handshake
attack on TLS published in 2014 [1] is based on the same logic that made the attack [2] on the Needham-
Schroeder protocol [3] possible almost two decades earlier. The core protocol in TLS 1.2 was also
vulnerable to a similar attack, but since the protocol itself is hidden within layers of packet formats and
C-like pseudocode, it was difficult for the attack to be detected. However, upon automated symbolic
verification [4], the attack quickly appeared not just in TLS, but also in variants of SSH and IPsec. Flaws
underlying more recent attacks such as Logjam [5] were known for years before they were observed when
the vulnerable protocol was analyzed. Had these protocols differed only in terms of network messages
while still using a uniform, formalized logic for internal key derivation and state machine transitioning
designed based on the state of the art of protocol analysis, these attacks could have been avoided.

1.1 The Noise Protocol Framework

The Noise Protocol Framework [6], recently introduced by Trevor Perrin, aims to avert this problem by
presenting a simple language for describing cryptographic network protocols. In turn, a large number of
semantic rules extend this simple protocol description to provide state machine transitions, key derivation
logic and so on. The goal is to obtain the strongest possible effective security guarantees for a given
protocol based on its description as a series of network messages by deriving its other elements from a
uniform, formally specified logic followed by all protocol designs.

In designing a new secure channel protocol using the Noise Protocol Framework, one only provides
an input using the simple language shown in Fig. 1. As such, from the viewpoint of the protocol
designer, Noise protocols can only differ in the number of messages, the types of keys exchanged and the
sequence or occurrence of public key transmissions and Diffie-Hellman operations. Despite the markedly
non-expressive syntax, however, the occurence and position of the “tokens” in each message pattern
can trigger complex state machine evolutions for both parties, which include operations such as key
derivation and transcript hash mixing.

Let’s examine Fig. 1. Before the AKE begins, the responder shares his static public key. Then in the
first protocol message, the initiator sends a fresh ephemeral key, calculates a Diffie-Hellman shared secret
between her ephemeral key and the recipient’s public static key, sends her public static key and finally
calculates a Diffie-Hellman shared secret between her static key and the responder’s public static key.
The responder then answers by generating an ephemeral key pair and sending his ephemeral public key,
deriving a Diffie-Hellman shared secret between his ephemeral key and the ephemeral key of the initiator
and another Diffie-Hellman shared secret between his static key and the ephemeral key of the initiator.
Both of these AKE messages can also contain message payloads, which, depending on the availability of
sufficient key material, could be AEAD-encrypted (in this particular Noise Handshake Pattern, this is
indeed the case.)

As we can see, quite a few operations have occured in what would at first glance appear to be simple
syntax for a simple protocol. Indeed, underlying these operations is a sophisticated state machine logic
tasked with mixing all of the derived keys together, determining when it is safe (or possible) to send
encrypted payloads and ensuring transcript consistency, among other things. This is the value of the
Noise Protocol Framework: allowing the protocol designer to describe what they need their protocol to
do fairly effectively using this simple syntax, and leaving the rest to a sturdy set of underlying rules.

1.2 Noise Explorer: Formal Verification for any Noise Handshake Pattern

Noise Explorer, the central contribution of this work, capitalizes on the strengths of the Noise Protocol
Framework in order to allow for automated protocol verification to no longer be limited only to monolithic,
pre-defined protocols with their own notation. In this work, we formalize Noise’s syntax, semantics, state
transitions and Noise Handshake Pattern validity rules. We then present translation logic to go from
Noise Handshake Patterns directly into full symbolic models ready for automated verification using
ProVerif [7,8].

This allows us to then construct Noise Explorer, an online engine that allows for designing, validating
and subsequently generating cryptographic models for the automated formal verification of any arbitrary

Noise Handshake Pattern. Models generated using Noise Explorer allow for the verification of Noise-
based secure channel protocols against a battery of comprehensive and sophisticated security queries.
Noise Explorer also comes with the first compendium of formal verification results for Noise Handshake
Patterns, browsable online using an interactive web application that presents dynamically generated
diagrams indicating with strong precision every cryptographic operation and security guarantee relevant
to every message within the Noise Handshake Pattern.

1.3 Contributions

Formal semantics and validity rules for Noise Handshake Patterns. §2 introduces the Noise
Protocol Framework in detail, presenting the first formal semantics and validity rules (illustrated as
typing inference rules) for Noise Handshake Patterns. This allows Noise Explorer to validate and separate
sane Noise Handshake Patterns from invalid ones based on arbitrary input, and is the foundation of
further contributions described below.

Translations from Noise Patterns to processes in the applied-pi calculus. §3 discusses auto-
mated translations from valid Noise Handshake Patterns into a representation in the applied-pi calcu-
lus [9] which includes cryptographic primitives, state machine transitions, message passing and a top-level
process illustrating live protocol execution.

Noise security querized formalized as security goals. In §4, we model all five “confidentiality”
security goals from the Noise Protocol Framework specification in the applied-pi calculus and extend the
two “authentication” goals to four.

Formal verification results for 50 Noise Handshake Patterns in the Noise Protocol Frame-
work specification. §5 sees all of the previous contributions come together to provide formal verification
results for 50 Noise Handshake Patterns.! We find that while most of the results match those predicted
by the specification authors, our extended model for “authentication” queries allows for more nuanced
results. Furthermore, we analyze unsafe Noise Handshake Patterns and discover a potential for forgery
attacks.

1.4 Related Work

This work represents the first comprehensive formal analysis of the Noise Protocol Framework. However,
substantial tangential work has occured centering on the WireGuard [10] VPN protocol, which employs
the IKpsk2 Noise Handshake Pattern: Lipp [11] presented an automated computational proof of Wire-
Guard, Donenfeld et al [12] presented an automated symbolic verification of WireGuard and Dowling et
al [13] presented a hand proof of WireGuard. These analyses’ results on the IKpsk2 handshake pattern
were in line with those we found in our own symbolic analysis. Other work exists centering on the
automated verification of modern protocols [14,15].

2 The Noise Protocol Framework

Noise’s protocol description language is restricted only to describing messages between two parties (ini-
tiator and responder), the public keys communicated and any Diffie-Hellman operations conducted.
Messages are called Noise “Message Patterns”. They make up authenticated key exchanges, which are
called Noise “Handshake Patterns”. Noise supports authenticated encryption with added data (AEAD)
and Diffie-Hellman key agreement. Noise does not support any signing operations.

The full description of a Noise protocol is contained within its description of a Noise Handshake
Pattern, such as the one seen in Fig. 1. The initial messages within a Noise Handshake Pattern, which
contain tokens representing public keys or Diffie-Hellman operations is called a handshake message. After
handshake messages, transport messages may occur carrying encrypted payloads. Here is an overview of
the tokens that may appear in a handshake message:

1 Anyone can use Noise Explorer to increase this number by designing, validating then automatically verifying their own
Noise Handshake Pattern.

e ¢, s The sender is communicating their ephemeral or static public key, respectively.

e ce, es, se, ss The sender has locally calculated a new shared secret. The first letter of the
token indicates the initiator’s key share while the second indicates the responder’s key share. As
such, this token remains the same irrespective of who is sending the particular handshake message
in which it occurs.

e psk The sender is mixing a pre-shared key into their local state and the recipient is assumed to
do the same.

Optionally, certain key materials can be communicated before a protocol session is initiated. A
practical example of how this is useful could be secure messaging protocols, where prior knowledge of an
ephemeral key pair could help a party initiate a session using a zero-round-trip protocol, which allows
them to send an encrypted payload without the responder needing to be online.

These pre-message patterns are represented by a series of messages occuring before handshake mes-
sages. The end of the pre-message stage is indicated by a “...” sign. For example, in Fig. 1, we see
a pre-message pattern indicating that the initiator has prior knowledge of the responder’s public static
key before initiating a protocol session.

We consider the following validity rules on Noise Handshake Patterns:

e Alternating message directions. Message direction within a Noise Handshake Pattern must
alternate (initiator — responder, initiator +— responder), with the first message being sent by the
initiator.

e Performing Diffie-Hellman key agreement more than once. Principals must not perform
the same Diffie-Hellman key agreement more than once per handshake.?

e Sending keys more than once. Principals must not send their static public key or ephemeral
public key more than once per handshake.

e Transport messages after handshake messages. Noise Handshake Patterns can only contain
transport handshake messages at the very bottom of the pattern.

e Appropriate key share communication. Principals cannot perform a Diffie-Hellman operation
with a key share that was not communicated to them prior.

e Unused key shares. Noise Handshake Patterns should not contain key shares that are not
subsequently used in any Diffie-Hellman operation.

¢ Transport messages. Noise Handshake Patterns cannot consist purely of transport messages.

2.1 Cryptographic Primitives

Noise Handshake Patterns make use of cryptographic primitives which in this work we will treat as
constructions in the symbolic model. As such, only their effective security guarantees are relevant; com-
putational details such as bit length are not carried over from the Noise Protocol Framework specification.
This is further explained in §4.

We consider the following cryptographic primitives:

e K P(): Generates a new Diffie-Hellman key pair consisting of a private key x and a public key g*.

e DH(x + KP(),y): Derives a Diffie-Hellman shared secret between the private key within the key
pair x and the public key y.

2This rule is not currently specified concretely although it is strongly implied in the specification. We assume it for
completeness.

Validity Rules
I

d:=«|- direction: left or right I kgD Tu{kirim
t =k | kiko | psk tokens with directed DH keys MsgKey T kom
o= {to,...,tn} context: set of prior tokens '

k7 €T ky €T kiky ¢T

tokens®(m) = {k? | k € mN{e,s}} U (m\ {e,s}) T U {kiks} F? m

MsgDH p
‘ Pre-Message Validity: T' -9 p‘ IS Eika,m
kgl T U{psk}H+?
MsgPSK ps Q/ {ps } m
PreEmptyW T l_d psk‘, m
klgT TuU{k?}+ep Handshake Validity: T' = h;
PreKey
T k,p
HSErnptyl_\i}_e
Mess Validity: I F¢
coage Yandly m‘ " m T Utokens™ (m) b h,
HSMessagel
ssel=seel seel' =eeel r -2 h,
skel'=e” el - - _
MsgEmpty~ p — HSMessageRt 'k"m TU tofnens (m) b hy
ssel'=esecl esel'=eecl [Ee hi
psk el =e~ €l Noise Pattern Validity: + n‘
MsgEmpty <
T'H €
{JF"p {3 p2
tokens™ U tokens™ F R
Noisevaliaokens ” (pi) U tokens™ (po)

N
(3
L 1 L

Figure 2: Noise Pattern Validity Rules

e E(k,n,ad,p): Encrypts and generates an authentication tag for plaintext p using key k and nonce

n, optionally extending the authentication tag to cover added data ad. The output is considered

to be Authenticated Encryption with Added Data (AEAD) [16].

e D(k,n,ad,c): Decrypts and authenticates ciphertext ¢ using key k& and nonce n. Added data ad

must also be included if it was defined during the encryption step for authentication to pass on

both ¢ and ad.
e R(k): Returns a new key by applying a pseudorandom function on k.
e H(d): A one-way hash function on data d.
e HKDF(ck,ik): A Hash-Based Key Derivation function [17] that takes keys (ck, ik) and outputs

a triple of keys. In some instances, the third key output is discarded and not used. The function
is similar to the original HKDF' definition but with ck acting as the salt and with a zero-length

“info” variable.

In the ProVerif automated protocol verification framework, Diffie-Hellman is implemented as a

let fun that takes two key-type values (representing points on X25519 [18] elliptic curve) along with an
equation that essentially illustrates the Diffie-Hellman relationship g%® = g*® in the symbolic model.?
DH and KP (implemented as generate keypair) are then implemented as 1et funs on top of that
construction:*

3Recall that, in the symbolic model, any arithemtic property such as additivity is not a given and must be modeled

specifically.

4keypairpack and keypairunpack are a fun and reduc pair that allow compressing and decompressing a tuple of
key values into a keypair-type value for easy handling throughout the model. Whenever the suffixes pack and unpack

appear from now on, it is safe to assume that they function in a similar pattern.

fun dhexp (key, key) :key.
equation forall a:key, b:key;
dhexp (b, dhexp(a, g)) = dhexp(a, dhexp(b, g)).

Encryption is implemented as a function that produces a bitstring (representing the ciphertext)
parametrized by a key, nonce, added data and plaintext. Decryption is a reduction function that produces
the correct plaintext only when the appropriate parameters are given, otherwise the process ends:

fun encrypt (key, nonce, bitstring, bitstring) :bitstring.
fun decrypt (key, nonce, bitstring, bitstring):aead reduc
forall k:key, n:nonce, ad:bitstring, plaintext:bitstring;

decrypt (k, n, ad, encrypt(k, n, ad, plaintext)) = aeadpack(true, ad, plaintext).

Finally, H and HM AC are implemented as one-way functions parametrized by two bitstrings (for
ease of use in modeling in the case of H, and for a keyed hash representation in the case of HM AC)
while HK DF is constructed on top of them.

2.2 Local State

Each principal in a Noise protocol handshake keeps three local state elements: CipherState, SymmetricState
and HandshakeState. These states contain each other in a fashion similar to a Russian Matryoshka

doll, with HandshakeState being the largest element, containing SymmetricState which in turn
contains CipherState.

e CipherState contains k and n, symmetric keys used to encrypt and decrypt ciphertexts.

e SymmetricState contains a CipherState tuple (k,n), an additional key ck and a hash function
output h.

¢ HandshakeState contains a SymmetricState along with additional local public keys (s,) and
remote public keys (rs,re).

Each state element comes with its own set of state transformation functions. These functions are
triggered by the occurence and position of tokens within a Noise Handshake Pattern. We present a
description of the state transition functions as seen in the Noise Protocol Framework specification, but
restricted to a representation that follows implementing Noise Handshake Patterns in the symbolic model.

2.2.1 CipherState

A CiphersState comes with the following state transition functions:
e InitializeKey (key): Sets k = key. Sets n = 0.
e HasKey (): Returns true if k£ is non-empty, false otherwise.
e SetNonce (nonce): Sets n = nonce.

e EncryptWithAd(ad, p): If k is non-empty returns E(k, n,ad, p) then increments n. Otherwise
returns p.

e DecryptWithAd(ad, c): If k is non-empty returns D(k,n, ad, ¢) then increments n. Otherwise
returns c. n is not incremented if authenticated decryption fails.

e Rekey (): Sets k = R(k).

In ProVerif, InitializeKey simply returns a cipherstate-type value packed with the input key
and a starting nonce. hasKey unpacks an input cipherstate and checks whether the key is defined.
The rest of the functions are based on similarly evident constructions:

letfun encryptWithAd(cs:cipherstate, ad:bitstring, plaintext:bitstring) =

let (k:key, n:nonce) = cipherstateunpack(cs) in
let e = encrypt(k, n, ad, plaintext) in

let csi = setNonce(cs, increment_nonce(n)) in
(csi, e).

letfun decryptWithAd(cs:cipherstate, ad:bitstring, ciphertext:bitstring) =

let (k:key, n:nonce) = cipherstateunpack(cs) in

let d = decrypt(k, n, ad, ciphertext) in

let (valid:bool, adi:bitstring, plaintext:bitstring) = aeadunpack(d) in
let csi = setNonce(cs, increment_nonce(n)) in

(csi, plaintext, wvalid).

letfun reKey (cs:cipherstate) =
let (k:key, n:nonce) = cipherstateunpack(cs) in
let ki = encrypt (k, maxnonce, empty, zero) in
cipherstatepack (bit2key(ki), n).

2.2.2 SymmetricState

A symmetricState comes with the following state transition functions:
e InitializeSymmetric (name): Sets ck = h = H(name).
e MixKey (ik): Sets (ck,tk) = HKDF(ck,ik) and calls Initialize Key(tk).
e MixHash (data): Sets h = H(h | data).’
e MixKeyAndHash (ik): Sets (ck,th,tk) = HKDF(ck,1ik), then calls MixHash(th) and InitializeKey(tk).
e GetHandshakeHash (): Returns h.
e EncryptAndHash (p): Sets ¢ = EncryptWithAd(h,p). Calls MizHash(c) and returns c.
e DecryptAndHash (c): Sets p = DecryptWithAd(h,c) and returns p.

e Split(): Sets (tki,the) = HKDF(ck,zero). Creates two CipherStates (c1,cz). Calls
¢1.InitializeKey(tk1)and cp.InitializeKey(tks). Returns (¢q, o), a pair of CipherStates
for encrypting transport messages.’

In ProVerif, these functions are implemented based on let fun declarations that combine previously
declared funs and letfuns:

letfun initializeSymmetric(protocol_name:bitstring) =
let h = hash(protocol_name, empty) in

let ck = bit2key(h) in

let cs = initializeKey (bit2key (empty)) in
symmetricstatepack(cs, ck, h).

letfun mixKey (ss:symmetricstate, input_key_material:key) =
let (cs:cipherstate, ck:key, h:bitstring) = symmetricstateunpack(ss) in
let (ck:key, temp_k:key, output_3:key) = hkdf (ck, input_key_material) in
symmetricstatepack (initializeKey (temp_k), ck, h).

letfun mixHash (ss:symmetricstate, data:bitstring) =
let (cs:cipherstate, ck:key, h:bitstring) = symmetricstateunpack(ss) in
symmetricstatepack (cs, ck, hash(h, data)).

letfun mixKeyAndHash (ss:symmetricstate, input_key_material:key) =
let (cs:cipherstate, ck:key, h:bitstring) = symmetricstateunpack(ss) in
let (ck:key, temp_h:key, temp_k:key) = hkdf (ck, input_key_material) in

5|| denotes bitstring concatenation.
6zero is meant to denote a null bitstring.

let (cs:cipherstate, temp_ck:key, h:bitstring) = symmetricstateunpack (mixHash (
symmetricstatepack (cs, ck, h), key2bit (temp_h))) in
symmetricstatepack (initializeKey (temp_k), ck, h).

letfun getHandshakeHash (ss:symmetricstate) =
let (cs:cipherstate, ck:key, h:bitstring) = symmetricstateunpack(ss) in
(ss, h).

letfun encryptAndHash (ss:symmetricstate, plaintext:bitstring) =
let (cs:cipherstate, ck:key, h:bitstring) = symmetricstateunpack(ss) in
let (cs:cipherstate, ciphertext:bitstring) = encryptWithAd(cs, h, plaintext) in
let ss = mixHash (symmetricstatepack(cs, ck, h), ciphertext) in
(ss, ciphertext).

letfun decryptAndHash (ss:symmetricstate, ciphertext:bitstring) =

let (cs:cipherstate, ck:key, h:bitstring) = symmetricstateunpack(ss) in
let (cs:cipherstate, plaintext:bitstring, valid:bool) = decryptWithAd(cs, h, ciphertext
) in

let ss = mixHash (symmetricstatepack(cs, ck, h), ciphertext) in
(ss, plaintext, wvalid).

letfun split (ss:symmetricstate) =
let (cs:cipherstate, ck:key, h:bitstring) = symmetricstateunpack(ss) in
let (temp_kl:key, temp_k2:key, temp_k3:key) = hkdf(ck, bit2key(zero)) in
let csl = initializeKey (temp_k1l) in
let cs2 = initializeKey(temp_k2) in
(ss, csl, cs2).

2.2.3 HandshakeState

A HandshakeState comes with the following state transition functions:

e Initialize(hp, i, s, e, rs, re): hp denotes a valid Noise Handshake Pattern. i is a
boolean which denotes whether the local state belongs to the initiator. Public keys (s,e,rs,re)
may be left empty or may be pre-initialized in the event that any of them appeared in a pre-
message. Calls ITnitializeSymmetric (hp.name). Calls MixHash () once for each public key
listed in the pre-messages within hp.

e WriteMessage (p): Depending on the tokens present in the current handshake message, different
operations occur:

e: Sets e «+— K P(). Appends ¢° to the return buffer. Calls MixHash(g®).
— s: Appends EncryptAndHash(g®) to the buffer.

— ee: Calls MixKey(DH (e, re)).
— es: Calls MixKey(DH (e, rs)) if initiator, MixKey(DH (s, re)) if responder.
— se: Calls MixKey(DH (s, re)) if initiator, MixKey(DH (e,rs)) if responder.
— ss: Calls MixKey(DH(s,1s)).

Then, EncryptAndHash (p) is appended to the return buffer. If there are no more handshake
messages, two new CipherStates are returned by calling Split ().

e ReadMessage (m): Depending on the tokens present in the current handshake message, different
operations occur:
— e: Sets re to the public ephemeral key retrieved from m.

s: Sets temp to the encrypted public static key retrieved from m. Sets rs to the result of
DecryptAndHash (temp), failing on authenticated decryption error.

— ee: Calls MixKey(DH (e, re)).
— es: Calls MixKey(DH (e, rs)) if initiator, MixKey(DH (s, re)) if responder.

— se: Calls MixKey(DH (s, re)) if initiator, MixKey(DH (e, rs)) if responder.
— ss: Calls MixKey(DH (s,1s)).

Then, DecryptAndHash is called on the message payload extracted from m. If there are no more
handshake messages, two new CipherStates are returned by calling Split ().

The translation of HandshakeState functions in ProVerif is generated dynamically and differs by
model. Hence, we discuss them in more detail in §3.

2.3

Security Grades

The Noise Protocol Framework specification defines different Noise Handshake Patterns to suit different
scenarios. These patterns come with different security properties depending on which keys and shared
secrets are employed and when. Two types of security grades are defined: “authentication” grades dealing

with the authentication of a message to a particular sender (and optionally, receiver) and “confidentiality

”

grades dealing with a message’s ability to resist the obtention of plaintext by an unauthorized party.
Authentication grades are defined in the original specification as follows:

Grade 0: No authentication. This payload may have been sent by any party, including an
active attacker.

Grade 1: Sender authentication vulnerable to key-compromise impersonation (KCI).
The sender authentication is based on a static-static Diffie-Hellman key share (ss) involving both
parties’ static key pairs. If the recipient’s long-term private key has been compromised, this
authentication can be forged.

Grade 2: Sender authentication resistant to key-compromise impersonation (KCI). The
sender authentication is based on an ephemeral-static Diffie-Hellman key share (es or se) between
the sender’s static key pair and the recipient’s ephemeral key pair. Assuming the corresponding
private keys are secure, this authentication cannot be forged.

Confidentiality grades are defined in the original specification as follows:

Grade 0: No confidentiality. This payload is sent in cleartext.

Grade 1: Encryption to an ephemeral recipient. This payload has forward secrecy, since
encryption involves an ephemeral-ephemeral Diffie-Hellman key share (ee). However, the sender
has not authenticated the recipient, so this payload might be sent to any party, including an active
attacker.

Grade 2: Encryption to a known recipient, forward secrecy for sender compromise
only, vulnerable to replay. This payload is encrypted based only on DHs involving the recipient’s
static key pair. If the recipient’s static private key is compromised, even at a later date, this payload
can be decrypted. This message can also be replayed, since there’s no ephemeral contribution from
the recipient.

Grade 3: Encryption to a known recipient, weak forward secrecy. This payload is
encrypted based on an ephemeral-ephemeral Diffie-Hellman key share and also an ephemeral-static
Diffie-Hellman key share involving the recipient’s static key pair. However, the binding between the
recipient’s alleged ephemeral public key and the recipient’s static public key hasn’t been verified
by the sender, so the recipient’s alleged ephemeral public key may have been forged by an active
attacker. In this case, the attacker could later compromise the recipient’s static private key to
decrypt the payload.

Grade 4: Encryption to a known recipient, weak forward secrecy if the sender’s private
key has been compromised. This payload is encrypted based on an ephemeral-ephemeral Diffe-
Helllman key share and also based on an ephemeral-static Diffie-Hellman key share involving the

recipient’s static key pair. However, the binding between the recipient’s alleged ephemeral public
and the recipient’s static public key has only been verified based on DHs involving both those public
keys and the sender’s static private key. Thus, if the sender’s static private key was previously
compromised, the recipient’s alleged ephemeral public key may have been forged by an active
attacker. In this case, the attacker could later compromise the intended recipient’s static private
key to decrypt the payload.

Grade 5: Encryption to a known recipient, strong forward secrecy. This payload is
encrypted based on an ephemeral-ephemeral Diffie-Hellman key share as well as an ephemeral-static
Diffie-Hellman key share with the recipient’s static key pair. Assuming the ephemeral private keys
are secure, and the recipient is not being actively impersonated by an attacker that has stolen its
static private key, this payload cannot be decrypted.

The Noise Handshake Pattern illustrated in Fig. 1 is described

in the original specification as claiming strong security guarantees:

IN - Handshake and transport message are attributed authentication
grades of 1, 2, 2 and 2 respectively, and confidentiality grades of
2, 4, 5 and 5. Other Noise Handshake Patterns, such as the one
e ee,se described in Fig. 3, sacrifice security properties to deal away with
the need to share public keys beforehand or to conduct additional

—e,8

Figure 3: An example Noise Kkey derivation steps (authentication: 0, 0, 2, 0 and confidentiality:

Handshake Pattern, IN. 0,3,15.)

In our analysis, we leave the confidentiality grades intact.
However, we introduce two new additional security grades, 3 and 4, which provide more nuance for
the existing authentication grades 1 and 2. In our analysis, authentication grades 1 and 2 hold even if
the authentication of the message can be forged towards the recipient if the sender carries out a separate
session with a separate, compromised recipient. authentication grades 3 and 4 do not hold in this case.
This nuance does not exist in the authentication grades defined in the latest Noise Protocol Framework
specification. Security grades are formalized and explored in more detail in §4.

2.4 Other Specification Features

The Noise Protocol Framework specification defines 15 “fun-
damental patterns”, 23 “deferred patterns” and 21 “PSK pat-
terns”. IK (Fig. 1) and IN (Fig. 3) are two fundamental patterns.
Deferred patterns are essentially modified fundamental patterns
where the communication of public keys or the occurence of Diffie-
Hellman operations is intentionally delayed. PSK pattterns are
patterns in which a pre-shared key token appears. Fig. 4 illus-
trates a deferred pattern based on the fundamental pattern shown
in Fig. 1.

The full Noise Protocol Framework specification extends some-
what beyond the description given as part of this work, including
features such as “identity hiding” and “dummy keys.” Some of
these features were not considered due to them not being relevant
to a formal symbolic analysis, while others, such as identity hid-
ing, which tests for whether a Noise Handshake Pattern leaks the
long-term identity of principals to different types of attackers, are
potentially valuable and slated as future work.

11K :

— e,€es, s
— e, ee

— Se

Figure 4: An example Noise
Handshake Pattern, I1K. This is
a deferred pattern based on IK,
shown in Fig. 1.

3 Translating Noise Protocols to the Applied-Pi Calculus

Based on our description of the Noise Protocol Framework in §2, we develop a set of rules and construc-
tions to automatically translate Noise Handshake Patterns into formal models. As mentioned in §1, we

10

1 letfun writeMessage_a (me:principal,

O © 00O Ut

[y

11
12

13

14

15 (hs,

let

let

let

let
let
(*

let
let
let

let
let

let

let

them:
hs:handshakestate, payload
sid:sessionid) =
s:keypair, e:
psk:key,

principal,
:bitstring,
(ss:symmetricstate,
keypair, rs:key, re:key,
initiator:bool) =
handshakestateunpack (hs)
(ne:bitstring, ciphertextl:bitstring,
ciphertext2:bitstring) = (empty,
empty, empty) in
e = generate_keypair (key_e (me,
sid)) in
ne = key2bit (getpublickey(e))
ss = mixHash(ss, ne) in
No PSK, so skipping mixKey =)
mixKey (ss, dh(e, rs)) in
s = generate_keypair (key_s (me))
(ss:symmetricstate, ciphertextl:
bitstring) = encryptAndHash (ss,
key2bit (getpublickey(s))) in
ss = mixKey(ss, dh(s, rs)) in
(ss:symmetricstate, ciphertext2:
bitstring) = encryptAndHash(ss,
payload) in
hs = handshakestatepack(ss, s,
re, psk, initiator) in
message_buffer = concat3(ne,
ciphertextl, ciphertext2) in
message_buffer).

in

them,

in

Ss =
in

e, rs,

© 00~ O U

10
11
12

13

14

15

letfun readMessage_a (me:principal,

them:

principal, hs:handshakestate, message
:bitstring, sid:sessionid) =
let (ss:symmetricstate, s:keypair, e:
keypair, rs:key, re:key, psk:key,
initiator:bool) =
handshakestateunpack (hs) in
let (ne:bitstring, ciphertextl:bitstring,
ciphertext2:bitstring) = deconcat3(
message) in
let validl = true in
let re = bit2key(ne) in
let ss = mixHash (ss, key2bit(re)) in
(* No PSK, so skipping mixKey x)
let ss = mixKey(ss, dh(s, re)) in
let (ss:symmetricstate, plaintextl:
bitstring, wvalidl:bool) =
decryptAndHash (ss, ciphertextl) in
let rs = bit2key(plaintextl) in
let ss = mixKey(ss, dh(s, rs)) in
let (ss:symmetricstate, plaintext2:
bitstring, valid2:bool) =
decryptAndHash (ss, ciphertext2) in
if ((validl && valid2) && (rs =
getpublickey (generate_keypair (key_s (
them))))) then (
let hs = handshakestatepack(ss, s, e
, rs, re, psk, initiator) in
(hs, plaintext2, true)).

3.1 ProVerif Model Components

Figure 5: The WriteMessage and ReadMessage letfun constructions for the first message
in IK (Fig. 1), generated according to translation rules from Noise Handshake Pattern to
ProVerif. The appropriate state transition functions are invoked in accordance with the
occurence and ordering of tokens in the message pattern.

use the ProVerif automated protocol verifier to obtain answers to our security queries. ProVerif uses
the applied-pi calculus, an ML-like language geared towards the description of network protocols, as its
input language. It analyzes described protocols under a Dolev-Yao model, which effectively mimicks an
active network attacker. ProVerif models are comprised of a section in which cryptographic protocol
primitives and operations are described as funs or let funs and a “top-level process” section in which
the execution of the protocol on the network is outlined. Parallel and unbounded numbers of executions
of different parts of the protocol are supported.

In the symbolic model, cryptographic primitives are “black boxes”: encryption functions are pseu-

In the ProVerif model of a Noise Handshake Pattern, there are nine components:

dorandom permutations, hash functions are perfect one-way functions and so on. Computational details
such as a hash function’s vulnerability to length extension attacks are not considered.

1. ProVerif parameters. This includes whether to reconstruct a trace and whether the attacker is

2. Types.

active or passive.

Cryptographic elements, such as keys are nonces, are given types.

CipherStates,

SymmetricStates and HandshakeStates are given types as well as constructors and reductors.

Constants. The generator of the g Diffie-Hellman group, HKDF constants such as zero and

the names of principals (Alice, indicating the initiator, Bob, indicating the recipient, and Charlie,
indicating a compromised principal controlled by the attacker) are all declared as constants.

11

4. Bitstring concatenation. Functions are declared for bitstring concatenation, useful for con-
structing and destructing the message buffers involved in WriteMessage and ReadMessage.

5. Cryptographic primitives. DH, KP, E, D, H and HKDF (all described in §2) are modeled
as cryptographic primitives in the symbolic model.

6. State transition functions. All functions defined for CipherState, SymmetricState and
HandshakeState are implemented in the applied-pi calculus.

7. Channels. Only a single channel is declared, pub, representing the public Internet.

8. Events and queries. Here, the protocol events and security queries relevant to a particular Noise
Handshake Pattern are defined. This includes the four authentication queries and five confiden-
tiality queries introduced in §2.

9. Protocol processes and top-level process. This includes the WriteMessage and ReadMessage
function for each handshake and transport message, followed by the top-level process illustrating
the live execution of the protocol on the network.

3.2 Verification Context

All generated models execute the protocol in a highly comprehensive context for verification: Alice
initiates a session with Bob, a process in which Alice initiates a session with Charlie, a process in which
Bob acts a responder to Alice and a process in which Bob acts as a responder to Charlie. Charlie is a
compromised participant whose entire state is controlled by the attacker. Each process in the top-level
process are executed in parallel. The top-level process is executed in an unbounded number of sessions.
Within the processes, transport messages are again executed in an unbounded number of sessions in
both directions. Fresh key material is provided for each ephemeral generated in each session within the
unbounded number of sessions: no ephemeral key reuse occurs between the sessions modeled.

3.3 Translation

Most of the cryptographic primitives and state transition functions, are included from a pre-existing set
of Noise Protocol Framework ProVerif headers written as a part of this work and are not automatically
generated according to a set of rules. Events, queries, protocol processes and the top-level process,
however, are fully generated using translation rules that make them unique for each Noise Handshake
Pattern.

Each handshake message and transport message is given its own WriteMessage and ReadMessage
construction represented as 1et funs in ProVerif. These functions are constructed to invoke the appropri-
ate state transition functions depending on the tokens included in the message pattern being translated.
Consider for example Fig. 5, which concerns the first message in IK (Fig. 1): — e, es, s, ss.

The state transition rules described in §2 are implicated by the tokens within the message pattern. By
following these rules, Noise Explorer generates a symbolic model that implements the state transitions
relevant to this particular message pattern. From the initiator’s side:

e e: Signals that the initiator is sending a fresh ephemeral key share as part of this message. This
token adds one state transformation to writeMessage_ a: mixHash, which hashes the new key
into the session hash.

e es: Signals that the initiator is calculating a Diffie-Hellman shared secret derived from the ini-
tiator’s ephemeral key and the responder’s static key as part of this message. This token adds
one state transformation to writeMessage a: mixKey, which calls the HKDF using as input
the existing SymmetricState key and DH(e,rs), the Diffie-Hellman share calculated from the
initiator’s ephemeral key and the responder’s static key.

12

e s: Signals that the initiator is sending a static key share as part of this message. This token
adds one state transformation to writeMessage a: encryptAndHash is called on the static
public key. If any prior Diffie-Hellman shared secret was established between the sender and the
recipient, this allows the initiator to communicate their long-term identity with some degree of
confidentiality.

e ss: Signals that the initiator is calculating a Diffie-Hellman shared secret derived from the initia-
tor’s static key and the responder’s static key as part of this message. This token adds one state
transformation to writeMessage a: mixKey, which calls the HKDF function using, as input,
the existing SymmetricState key, and DH(s,rs), the Diffie-Hellman share calculated from the
initiator’s static key and the responder’s static key.

Message A’s payload, which is modeled as the output of the function msg a (initiatorIdentity,
responderIdentity, sessionId),isencrypted as ciphertext2. Thisinvokes encryptAndHash,
which performs AEAD encryption on the payload, with the session hash as the added data (encryptWithAd)
and mixHash, which hashes the encrypted payload into the next session hash.

On the receiver end:

e e: Signals that the responder is receiving a fresh ephemeral key share as part of this message. This
token adds one state transformation to readMessage a: mixHash, which hashes the new key
into the session hash.

e es: Signals that the responder is calculating a Diffie-Hellman shared secret derived from the
initiator’s ephemeral key and the responder’s static key as part of this message. This token adds
one state transformation to readMessage a: mixKey, which calls the HKDF function using, as
input, the existing SymmetricState key, and DH (e,rs), the Diffie-Hellman share calculated from
the initiator’s ephemeral key and the responder’s static key.

e s: Signals that the responder is receiving a static key share as part of this message. This token
adds one state transformation to readMessage a: encryptAndHash is called on the static
public key. If any prior Diffie-Hellman shared secret was established between the sender and the
recipient, this allows the initiator to communicate their long-term identity with some degree of
confidentiality.

e ss: Signals that the responder is calculating a Diffie-Hellman shared secret derived from the
initiator’s static key and the responder’s static key as part of this message. This token adds one
state transformation to readMessage a: mixKey, which calls H K DF function using, as input,
the existing SymmetricState key and DH(s,rs), the Diffie-Hellman share calculated from the
initiator’s static key and the responder’s static key.

Message A’s payload invokes the following operation: decryptAndHash, which performs AEAD
decryption on the payload, with the session hash as the added data (decryptWithAd) and mixHash,
which hashes the encrypted payload into the next session hash.

4 Modeling Noise Security Guarantees in the Symbolic Model
As described in §2, we consider four “authentication” grades and five “confidentiality” grades when
evaluating the security properties of individual messages within Noise Handshake Patterns. In ProVerif,

we want to formulate these grades as event-based queries. This implies specifying a number of events
triggered at specific points in the protocol flow as well as queries predicated on these events.

4.1 Events

The following events appear in generated ProVerif models:

13

public DH keys
ephemeral DH key
static DH key
tokens
public DH key

kiks shared DH secret (ee, es, se, or ss)
psk pre-shared key

pre-messages
end of pre-message (empty)
D pre-message with public DH key
messages
end of message (empty)

,m message with token

handshake (responder’s turn)
end of handshake
h; responder message, then initiator’s turn

end of handshake
h, initiator message, then responder’s turn
noise patterns

€
m
%
= handshake (initator’s turn)
€
m
ALY

2L op, pre-messages, then handshake

Figure 6: Noise Pattern Syntax.

SendMsg (principal, principal, stage, bitstring) takes in the identifier of the mes-
sager sender, the identifier of the recipient, a “stage” value and the plaintext of the message payload.
The “stage” value is the output of a function parametrized by the session ID, a unique value gen-
erated for each execution of the protocol using ProVerif’s new keyword, and an identifier of which
message this is within the Noise Handshake Pattern (first message, second message, etc.)

RecvMsg (principal, principal, stage, bitstring) is a mirror event of the above,
with the first principal referring to the recipient and the second referring to the sender.

LeakS (phasen, principal) indicates the leakage of the long-term secret key of the princi-
pal. phasen refers to which “phase” the leak occured: in generated ProVerif models, phase 0
encompasses protocol executions that occur while the session is under way, while phase 1 is strictly
limited to events that occur after the session has completed and has been closed.

LeakPsk (phasen, principal, principal) indicates the leakage of the pre-shared key (PSK)
of the session between an initiator (specified as the first principal) and a responder in the specified
phase.

4.2 Queries

In all examples below, Bob is the sender and Alice is the recipient. The message in question is message D,
i.e. the fourth message pattern within the Noise Handshake Pattern. sid, and sid; refer to the session
ID as registered in the trigger events by Alice and Bob. In valid contexts, these would be the same
session ID. A principal ¢ refers to any arbitrary principal on the network, which includes compromised
principal Charlie.

In the event of a non-existent static key for either Alice or Bob, or of a non-existent PSK, the relevant

Leaks or LeakPsk event is removed from the query.

14

4.2.1 Authentication Grade 1

In this query, we test for sender authentication and message integrity. If Alice receives a valid message
from Bob, then Bob must have sent that message to someone, or Bob had their static key compromised
before the session began, or Alice had their static key compromised before the session began:

RecvM sg(alice, bob, stage(d, sid,), m) —

SendM sg(bob, ¢, stage(d, sidp), m) V

(LeaksS(phaseg, bob) A Leak Psk(phaseg, alice,bob)) V

(LeakS (phaseg, alice) A LeakPsk(phaseg, alice, bob))

4.2.2 Authentication Grade 2

In this query, we test for sender authentication and is Key Compromise Impersonation resistance. If
Alice receives a valid message from Bob, then Bob must have sent that message to someone, or Bob had
their static key compromised before the session began.

RecvM sg(alice, bob, stage(d, sid,), m) —

SendMsg(bob, ¢, stage(d, sidy), m) V

LeakS(phaseq, bob)

4.2.3 Authentication Grade 3

In this query, we test for sender and receiver authentication and message integrity. If Alice receives a
valid message from Bob, then Bob must have sent that message to Alice specifically, or Bob had their
static key compromised before the session began, or Alice had their static key compromised before the
session began.

RecvM sg(alice, bob, stage(d, sid,), m) —

SendM sg(bob, alice, stage(d, sidy), m) V

(LeakS(phaseg, bob) A Leak Psk(phaseq, alice,bob)) V

(leakS(phaseq, alice) N Leak Psk(phaseq, alice, bob))

4.2.4 Authentication Grade 4

In this query, we test for sender and receiver authentication and is Key Compromise Impersonation
resistance. If Alice receives a valid message from Bob, then Bob must have sent that message to Alice
specifically, or Bob had their static key compromised before the session began.

RecvM sg(alice, bob, stage(d, sid,), m) —

SendM sg(bob, alice, stage(d, sidy), m) V

LeakS (phaseq, bob)

4.2.5 Confidentiality Grades 1 and 2

In these query, we test for message secrecy by checking if a passive attacker (for grade 1) or active
attacker (for grade 2) is able to retrieve the payload plaintext only by compromising Alice’s static key
either before or after the protocol session.

attackeryi (msgq(bob, alice, sidy)) —

(LeakS(phaseg, alice) V LeakS(phasey,alice)) N

(Leak Psk(phaseg, alice, bob) V

Leak Psk(phasey, alice, bob))

In the above, attackery; indicates that the attacker is operating in phase 1 of the protocol execution.

15

Pattern | Auth. Conf. Pattern | Auth. Conf. Pattern | Auth. Conf.

N 0 2 X1N 00002 01131 I11K1 0444401555
K 1 2 X1K 020444|215355 | I1X 04444101555
X 1 2 XK1 02444 01555 IX1 00444103355
NN 000 011 X1K1 0204441015355 | I1X1 00444101355
NK 020 215 X1X 020222015355 | NpskO 1 2

NX 020 015 XX1 00444 01355 KpskO 1 2

XN 0020 0115 X1X1 000444013355 | Xpskl 1 2

XK 0244421555 || KIN 0020 0115 NNpskO | 1111 2333
XX 0244401555 | KIK 04444 21555 NNpsk2 [0111 0333
KN 0020 0315 KK1 0444 0355 NKpskO | 1414 2535
KK 1444 2455 K1K1 0444 01555 NKpsk2 | 0414 0335
KX 0444 0355 K1X 04444 01555 NXpsk2 | 0414 0335
IN 0020 0315 KX1 00444 03355 XNpsk3 | 00414101335
IK 1444 2455 K1X1 00444 01355 XKpsk3 | 00444101355
IX 0444 0355 IIN 00202 01151 KNpskO | 1141 2353
NK1 020 015 11K 04444 21555 KNpsk2 [0141 0353
NX1 00020|01315 | IK1 0444 0355 INpskl 1141 2353

Figure 7: Verification results for 50 Noise Handshake Patterns.

4.2.6 Confidentiality Grades 3 and 4

In this query, we test for forward secrecy by checking if a passive attacker is able to retrieve the payload
plaintext only by compromising Alice’s static key before the protocol session, or after the protocol session
along with Bob’s static public key (at any time.)

attackeryi (msgaq(bob, alice, sidy)) —
(LeakS(phaseg,alice) N LeakPsk(phaseg,alice, bob)) V
(LeakS(py,alice) N LeakPsk(py,alice, bob) A
LeakS(p, bob))

In the above, ps, py, p. refer to any arbitrary phases.

4.2.7 Confidentiality Grade 5

In this query, we test for strong forward secrecy by checking if an active attacker is able to retrieve the
payload plaintext only by compromising Alice’s static key before the protocol session.

attackerpi (msgq(bob, alice, sidy)) —
(LeakS(phaseg, alice) A LeakPsk(phaseg, alice, bob))

A set of the above queries is generated for each handshake and transport message within a Noise
Handshake Pattern, allowing for verification to occur in the comprehensive context described in §3.
Whenever a pattern contains a PSK and LeakPSK events start to get involved, we ideally account for
cases where one long-term secret is compromised but not the other. This indicates that we may need a
richer notion of authenticity and confidentiality grades than the 1-5 markers that the Noise specification
provides. For consistency, we are still using the old grades, but to truly understand and differentiate the
security provided in many cases, we recommend that the user view the detailed queries and results as
generated by Noise Explorer and available in its detailed rendering of the verification results.

16

5 Reasoning About Noise Handshake Patterns with Noise Ex-
plorer

A central motivation to this work is the obtention of a general framework for designing, reasoning about,
formally verifying and comparing any arbitrary Noise Handshake Pattern. Noise Explorer is a web
framework that implements all of the formalisms and ProVerif translation logic described so far in this
work in order to provide these features.

Noise Explorer is ready for use by the general public today at https://noiseexplorer.com.
Here are Noise Explorer’s main functionalities:

Designing and validating Noise Handshake Patterns. This allows protocol designers to immedi-
ately obtain validity checks that verify if the protocol conforms to the latest Noise Protocol Framework
specification.”

Generating cryptographic models for formal verification using automated verification tools.
Noise Explorer can compile any Noise Handshake Pattern to a full representation in the applied-pi cal-
culus including cryptographic primitives, state machine transitions, message passing and a top-level
process illustrating live protocol execution. Using ProVerif, we can then test against sophisticated secu-
rity queries starting at basic confidentiality and authentication and extending towards forward secrecy,
post-compromise security and resistance to key compromise impersonation. The models can also be used
as a foundation for further modeling using the CryptoVerif [19] computational model protocol prover.

Exploring the first compendium of formal verification results for Noise Handshake Pat-
terns. Since formal verification for complex Noise Handshake Patterns can take time and require fast
CPU hardware, Noise Explorer comes with a compendium detailing the full results of all Noise Hand-
shake Patterns described in the latest revision of the original Noise Protocol Framework specification.
These results are presented with a security model that is even more comprehensive than the original
specification, as described in §4.

5.1 Accessible High Assurance Verification for Noise-Based Protocols

Noise Explorer users are free to specify any arbitrary Noise Handshake Pattern of their own design. Once
this input is validated, formal verification models are generated. the ProVerif verification output can
then be fed right back into Noise Explorer, which will then generate detailed interactive pages describing
the analysis results.

The initial view of the results includes a pedagogical plain-English paragraph for each message sum-
marizing its achieved security guarantees. For example, the following paragraph is generated for message
D of IK:

“Message D, sent by the responder, benefits from sender and receiver authentication and is resis-
tant to Key Compromise Impersonation. Assuming the corresponding private keys are secure, this
authentication cannot be forged. Message contents benefit from message secrecy and strong forward
secrecy: if the ephemeral private keys are secure and the initiator is not being actively impersonated by
an active attacker, message contents cannot be decrypted.”

Furthermore, each message comes with a detailed analysis view that allows the user to immediately
access a dynamically generated representation of the state transition functions for this particular message
as modeled in ProVerif and a more detailed individual writeup of which security goals are met and why.
We believe that this “pedagogy-in-depth” that is provided by the Noise Explorer web framework will
allow for useful, push-buttom analysis of any constructed protocol within the Noise Protocol Framework
that is highly comprehensive.

Noise Explorer’s development was done in tandem with discussions with the Noise Protocol Frame-
work author: pre-release versions were built around revision 33 of the Noise Protocol Framework and
an update to support revision 34 of the framework was released in tandem with the specification re-
vision draft. Revision 34 also included security grade results for deferred patterns that were obtained

7As of writing, Revision 34 is the latest draft of the Noise Protocol Framework. Noise Explorer is continuously updated
in collaboration with the authors of the Noise Protocol Framework specification.

17

https://noiseexplorer.com

directly via Noise Explorer’s compendium of formal analysis results. We plan to continue collaborating
with the Noise Protocol Framework author indefinitely to support future revisions of the Noise Protocol
Framework.

5.2 Modeling for Forgery Attacks in Noise Explorer

Using ProVerif, we were able to test for and discover a novel forgery attack within certain Noise Hand-
shake Patterns. Essentially, we can compose well-known attack vectors (invalid Diffie-Hellman key shares,
repeated AEAD nonces) to attack patterns that rely only on static-static key derivation (ss) for authen-
tication.

As we explain later in this section, the pattern underlying this finding is not considered as valid in
the latest version of the Noise Protocol Framework specification and its validity was already ambiguous,
if not outright disallowed, in previous revisions.

Consider the pattern KXS below:

KXS:
— S

— e

— e, ee,s,ss

This is a variation of the Noise Handshake Pattern KX that uses ss instead of se, and es, so it is a
little more efficient while satisfying the same confidentiality and authentication goals. In particular, the
responder can start sending messages immediately after the second message.

However, there is an attack if the responder does not validate ephemeral public values. Suppose a
malicious initiator were to send an invalid ephemeral public key e, say e = 0. Then, because of how
Diffie-Hellman operations work on X25519, the responder would compute ee = 0 and the resulting key
would depend only on the static key ss. Note that while the responder could detect and reject the
invalid public key, the Noise specification explicitly discourages this behavior.

Since the responder will encrypt messages with a key determined only by ss (with a nonce set to 0),
the malicious initiator can cause it to encrypt two messages with the same key and nonce, which allows
for forgery attacks. A concrete man-in-the-middle attack on this pattern is as follows:®

In the pre-message phase, A sends a public static key share s4 to B. In the first session:

1. A malicious C' initiates a session with B where he pretends to be A. C sends e = Z such that Z*
would evaluate to Z for any x. This effectively allows us to model for forcing an X25519 zero-value
key share in the symbolic model.

2. B receives e = Z and accepts a new session with:

e hpo = H(pattern_name)
e ckp1 = hpo
e hp1 = H(hpo,sa,e = 2)
3. B generates rej, computes e¢ = Z and sends back (rej,ee = Z,sp,ssap, msg,) where sp is

encrypted with ckps = H(ckp1,ee = Z) as the key, 0 as the nonce and hgy = H(hpi,re1,ee = Z)
as additional data.

4. msg, is encrypted with ckps = H(ckp2,ssap) as the key, 0 as the nonce and hps = H(hps, sp)
as additional data.

5. C discards this session but remembers the encrypted message.

8For simplicity, here we use H to represent the more complex key derivation and mixing functions.

18

In a second session:
1. A initiates a session with B by sending e. So, at A:

e hyo= H(pattern name)
o cka1 =hao
o ha1 = H(hao,54,€)

2. C intercepts this message and replaces it with the invalid public key Z = 0.
3. B receives e = Z and accepts a new session with:

e hpo = H(pattern_name)
e ckp1 = hpo
o hpy = H(hpo,s54,6 =2)

4. B generates req, computes ee = Z and sends back (res,ee = Z,sp,ssap,msgy,) where sp is
encrypted with ckpy = H(ckp1,ee = Z) as the key, 0 as the nonce and hps = H(hpi,re) as
additional data.

5. msgyp is encrypted with ckps = H(ckpa, ssap) as the key, 0 as the nonce and hps = H(hpa, Sp)
as additional data.

6. C intercepts this response.

Notably, the encryption keys (ckps3) and the nonces (0) used for msg, in session 1 and msgs in session
2 are the same. Hence, if the underlying AEAD scheme is vulnerable to the repeated nonces attack,
C can compute the AEAD authentication key for ckps and tamper with msg, and msg, to produce a
new message msg. that is validly encrypted under this key. Importantly, C' can also tamper with the
additional data hp3 to make it match any other hash value.

C replaces the message with (re = Z,ee = Z,sp, ssap, msg.) and sends it to A, where sp is re-
encrypted by C' using ckps which it knows and msg, is forged by C using the AEAD authentication key
for ckps. A receives the message (re = Z,ee = Z,sp, $sap, msg.) and computes ckao = H(ckai,ee =
Z) and has = H(hai,ee = Z). A then decrypts sg. A then computes ckas = H(ckao,ssap) and
has = H(ha2,sap) and decrypts msg.. This decryption succeeds since ckas = ckps. The attacker C
therefore has successfully forged the message and the added data. At a high level, the above analysis
can be read as indicating one of three shortcomings:

1. Using ss in Noise Handshake Patterns must be done carefully. A Noise Handshake
Pattern validation rule could be introduced to disallow the usage of ss in a handshake unless it is
accompanied by se or es in the same handshake pattern.

2. Diffie-Hellman key shares must be validated. Implementations must validate incoming Diffie-
Hellman public values to check that they are not one of the twelve known integers which can cause
a scalar multiplication on the X25519 curve to produce an output of 0.

3. Independent sessions must be checked for AEAD key reuse. Ephemeral and static public
key values are mixed into the encryption key derivation step.

The attack described above was reported to the Noise Protocol Framework author. The author’s response
revolved around the fact that KXS was only considered a valid Noise Protocol Framework pattern due to
a lack of clarity in the then-current revision of the specification. As a result of our report, revision 34 of
the Noise Protocol Framework specification included the following more stringent pattern validity rule:
After calculating a Diffie-Hellman shared secret between a remote public key (either static or ephemeral)
and the local static key, the local party must not perform any encryptions unless it has also calculated a
Diffie-Hellman key share between its local ephemeral key and the remote public key. In particular, this
means that:

19

e After an se or ss token, the initiator must not send a payload unless there has also been an ee
or es token respectively.

e After an es or ss token, the responder must not send a payload unless there has also been an ee
or se token respectively.

These new validity rules were implemented into Noise Explorer’s pattern validation logic.

6 Discussion and Future Work

In this work, we have provided the first formal treatment of the Noise Protocol Framework. We translate
our formalisms into the applied-pi calculus and use this as the basis for automatically generating models
for the automated formal verification of arbitrary Noise Handshake Patterns. We coalesce our results
into Noise Explorer, an online framework for pedagogically designing, validating, verifying and reasoning
about arbitrary Noise Handshake Patterns.

Noise Explorer has already had an impact as the first automated formal analysis targeting any and
all Noise Handshake Patterns. Verification results obtained from Noise Explorer were integrated into the
original specification and precisions were made to the validation rules and security goals as a result of
the scrutiny inherent to our analysis.

Ultimately, it is not up to us to comment on whether Noise presents a “good” framework, per se.
However, we present confident results that its approach to protocol design allows us to cross a new bridge
for not only designing and implementing more robust custom secure channel protocols, but also applying
existing automated verification methodologies in new and more ambitious ways.

Future work could include the automated generation of computational models to be verified using
CryptoVerif and of verified implementations of Noise Handshake Patterns. The scope of our formalisms
could also be extended to include elements of the Noise Protocol Framework specification, such as queries
to test for identity hiding.

Acknowledgements

We would like to thank Bruno Blanchet for his insight with regards to modeling and optimization in
ProVerif.

20

References

[1]

[10]

[11]

[12]

[15]

[16]

[17]

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti, and Pierre-Yves
Strub. Triple handshakes and cookie cutters: Breaking and fixing authentication over TLS. In IEEE
Symposium on Security & Privacy (Oakland), pages 98-113, 2014.

Gavin Lowe. An attack on the needham- schroeder public- key authentication protocol. Information
processing letters, 56(3), 1995.

Roger M Needham and Michael D Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993-999, 1978.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Alfredo Pironti. Verified contributive chan-
nel bindings for compound authentication. In Network and Distributed System Security Symposium
(NDSS ’15), 2015.

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J Alex
Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, et al. Imperfect
forward secrecy: How Diffie-Hellman fails in practice. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 5-17, 2015.

Trevor Perrin. The Noise protocol framework, 2015. Available at http://www.noiseprotocol.
org.

Vincent Cheval and Bruno Blanchet. Proving more observational equivalences with ProVerif. In
International Conference on Principles of Security and Trust, pages 226—246. Springer, 2013.

Bruno Blanchet. Modeling and verifying security protocols with the applied pi calculus and ProVerif.
Foundations and Trends in Privacy and Security, 1(1-2):1-135, October 2016.

Martin Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calculus: Mobile values, new
names, and secure communication. J. ACM, 65(1):1:1-1:41, 2018.

Jason A Donenfeld. WireGuard: next generation kernel network tunnel. In 2/th Annual Network
and Distributed System Security Symposium, NDSS, 2017.

Benjamin Lipp. A Mechanised Computational Analysis of the WireGuard Virtual Private Network
Protocol.

Jason Donenfeld and Kevin Milner. Formal verification of the wireguard protocol, 2017.
https://www.wireguard.com/formal-verification/.

Benjamin Dowling and Kenneth G. Paterson. A cryptographic analysis of the wireguard protocol.
Cryptology ePrint Archive, Report 2018/080, 2018. https://eprint.iacr.org/2018/080.

N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verification for secure messaging protocols
and their implementations: A symbolic and computational approach. In IEEE FEuropean Symposium,
on Security and Privacy (EuroSE&P), 2017.

Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models and reference imple-
mentations for the tls 1.3 standard candidate. In Security and Privacy (SP), 2017 IEEE Symposium
on, pages 483-502. IEEE, 2017.

Phillip Rogaway. Authenticated-encryption with associated-data. In Ninth ACM Conference on
Computer and Communications Security (CCS-9), pages 98—-107, Washington, DC, November 2002.
ACM Press.

H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Advances in
Cryptology (CRYPTO), pages 631-648. 2010.

21

http://www.noiseprotocol.org
http://www.noiseprotocol.org
https://eprint.iacr.org/2018/080

ProVerif
I

v
a
f(My,...,M,)

newa:T; F
letz =M in E
if M = N then F; else Fy

P,Q .=
0
in(M,z :7); P
out(M,N); P
let =M in P
PlQ
P

)y

insert a(M,...,M,); P
get a(=My,z9,...,x,) in P

event M; P

phase n; P

type T

freea:

query g

table a(7my,...,7n)
fun C(my,...,7) : T

reduc forall @y : 79,...,%y ¢ Tn;f(Ml, -
equation forall @y : 71,..., %y : Tn; M = M’

letfun f(z1:71,...,2n 7)) = F

let p(xy : 71, . &y :Tn) =P

n=Aj....A,.process P

7Mn):M

terms
values
names
function application
enriched terms
return value
new name q of type 7
variable definition
if-then-else
processes
null process
input x from channel M
output N on channel M
variable definition
parallel composition
replication of P
insert into table a
get table entry
specified by M;
event M
enter phase n
declaration
type 7
name a

query ¢
table a

constructor
destructor
equation
pure function

process
script

Figure 8: ProVerif syntax, based on the applied-pi calculus.

(PKC), pages 207-228, 2006.

[18] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Public Key Cryptography

[19] Bruno Blanchet. CryptoVerif: Computationally sound mechanized prover for cryptographic proto-
cols. In Dagstuhl seminar “Formal Protocol Verification Applied, page 117, 2007.

22

1 let initiator (me:principal, them:principal,

sid:sessionid) =

2 let s = keypairpack (bit2key (empty), bit2key(

empty)) in

3 out (pub, getpublickey(s));
4 ((let e = keypairpack (bit2key (empty),

5

6

10

11

12

13
14

15
16

17

18

19
20

21

22

23

24

25
26

27

28
29

30

31
32
33
34
35
36
37

bit2key (empty)) in
let rs = getpublickey(generate_keypair
(key_s (them))) in
let re = bit2key (empty) in
let hs:handshakestate =
initialize_initiator (empty, s, e,
rs, re, bit2key(empty)) in
insert statestore(me, them, sid,
statepack_a (hs))
(get statestore(=me, =them, =sid,
statepack_a (hs)) in
let (hs:handshakestate, message_a:
bitstring) = writeMessage_a (me,
them, hs, msg_a(me, them, sid),
sid) in
event SendMsg(me, them, stagepack_a(
sid), msg_a(me, them, sid));
insert statestore(me, them, sid,
statepack_b (hs)) ;
out (pub, message_a)
(get statestore(=me, =them, =sid,
statepack_Db(hs)) in
in(pub, message_b:bitstring);
let (hs:handshakestate, plaintext_b:
bitstring, valid:bool, csl:
cipherstate, cs2:cipherstate) =
readMessage_b (me, them, hs,
message_b, sid) in
event RecvMsg (me, them, stagepack_Db(
sid), plaintext_b);
insert statestore(me, them, sid,
statepack_c(hs, csl, cs2));

0
! (get statestore (=me, =them, =sid,
statepack_c (hs, csl, cs2)) in
let hs = handshakestatesetcs(hs, csl)
in
let (hs:handshakestate, message_c:
bitstring) = writeMessage_c (me,
them, hs, msg_c(me, them, sid),
sid) in

event SendMsg(me, them, stagepack_c(
sid), msg_c(me, them, sid));
insert statestore(me, them, sid,
statepack_d(hs,
handshakestategetcs (hs), cs2));
out (pub, message_c)
! (get statestore(=me, =them, =sid,

statepack_d(hs, csl, cs2)) in
let hs = handshakestatesetcs (hs, cs2)
in

in (pub, message_d:bitstring);
let (hs:handshakestate, plaintext_d:
bitstring, valid:bool) =
readMessage_d (me, them, hs,
message_d, sid) in
event RecvMsg (me, them, stagepack_d(
sid), plaintext_d);
(x» Final message, do not pack state x)
event RecvEnd(valid)
(event LeakS (phasel, me);
out (pub, key_s(me))
(phase 1;
event LeakS (phasel, me);
out (pub, key_s(me)))).

1 let responder (me:principal, them:principal,

sid:sessionid) =

2 let s = generate_keypair (key_s(me)) in
3 out (pub, getpublickey(s));

4

5
6

12
13

14
15

16

17
18

19
20

21

22
23

24
25
26
27
28

29

30

31
32
33
34
35
36

37
23

((let e = keypairpack (bit2key (empty),

bit2key (empty)) in
let rs = bit2key (empty) in
let re = bit2key (empty) in
let hs:handshakestate =
initialize_responder (empty, s, e,
rs, re, bit2key(empty)) in
insert statestore(me, them, sid,
statepack_a (hs))
(get statestore(=me, =them, =sid,
statepack_a(hs)) in
in(pub, message_a:bitstring);
let (hs:handshakestate, plaintext_a:
bitstring, valid:bool) =
readMessage_a (me, them, hs,
message_a, sid) in
event RecvMsg(me, them, stagepack_a/(
sid), plaintext_a);
insert statestore(me, them, sid,
statepack_b (hs)) ;
0
(get statestore(=me, =them, =sid,
statepack_b(hs)) in
let (hs:handshakestate, message_b:
bitstring, csl:cipherstate, cs2:

cipherstate) = writeMessage_b (me,
them, hs, msg_b(me, them, sid),
sid) in

event SendMsg(me, them, stagepack_b(
sid), msg_b(me, them, sid));
insert statestore(me, them, sid,
statepack_c(hs, csl, cs2));
out (pub, message_b)
! (get statestore(=me, =them, =sid,

statepack_c(hs, csl, cs2)) in
let hs = handshakestatesetcs(hs, csl)
in

in(pub, message_c:bitstring);

let (hs:handshakestate, plaintext_c:
bitstring, valid:bool) =
readMessage_c (me, them, hs,
message_c, sid) in

event RecvMsg(me, them, stagepack_c/(
sid), plaintext_c);

insert statestore(me, them, sid,
statepack_d (hs,
handshakestategetcs (hs), cs2));

0
! (get statestore(=me, =them, =sid,
statepack_d(hs, csl, cs2)) in
let hs = handshakestatesetcs (hs, c¢s2)
in
let (hs:handshakestate, message_d:
bitstring) = writeMessage_d (me,
them, hs, msg_d(me, them, sid),
sid) in

event SendMsg(me, them, stagepack_d(
sid), msg_d(me, them, sid));
(# Final message, do not pack state x)
out (pub, message_d)
(event LeakS (phase0O, me);
out (pub, key_s(me))
(phase 1;
event LeakS (phasel, me);
out (pub, key_s(me)))).

Figure 9: Initiator and responder processes for the IK Noise Handshake Pattern.

	Introduction
	The Noise Protocol Framework
	Noise Explorer: Formal Verification for any Noise Handshake Pattern
	Contributions
	Related Work

	The Noise Protocol Framework
	Cryptographic Primitives
	Local State
	CipherState
	SymmetricState
	HandshakeState

	Security Grades
	Other Specification Features

	Translating Noise Protocols to the Applied-Pi Calculus
	ProVerif Model Components
	Verification Context
	Translation

	Modeling Noise Security Guarantees in the Symbolic Model
	Events
	Queries
	Authentication Grade 1
	Authentication Grade 2
	Authentication Grade 3
	Authentication Grade 4
	Confidentiality Grades 1 and 2
	Confidentiality Grades 3 and 4
	Confidentiality Grade 5

	Reasoning About Noise Handshake Patterns with Noise Explorer
	Accessible High Assurance Verification for Noise-Based Protocols
	Modeling for Forgery Attacks in Noise Explorer

	Discussion and Future Work

