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Abstract. WireGuard (Donenfeld, NDSS 2017) is a recently proposed secure network tunnel operating at layer
3. WireGuard aims to replace existing tunnelling solutions like IPsec and OpenVPN, while requiring less code,
being more secure, more performant, and easier to use. The cryptographic design of WireGuard is based on
the Noise framework. It makes use of a key exchange component which combines long-term and ephemeral
Diffie-Hellman values (along with optional preshared keys). This is followed by the use of the established keys
in an AEAD construction to encapsulate IP packets in UDP. To date, WireGuard has received no rigorous
security analysis. In this paper, we, rectify this. We first observe that, in order to prevent Key Compromise
Impersonation (KCI) attacks, any analysis of WireGuard’s key exchange component must take into account
the first AEAD ciphertext from initiator to responder. This message effectively acts as a key confirmation and
makes the key exchange component of WireGuard a 1.5 RTT protocol. However, the fact that this ciphertext is
computed using the established session key rules out a proof of session key indistinguishability for WireGuard’s
key exchange component, limiting the degree of modularity that is achievable when analysing the protocol’s
security. To overcome this proof barrier, and as an alternative to performing a monolithic analysis of the entire
WireGuard protocol, we add an extra message to the protocol. This is done in a minimally invasive way that
does not increase the number of round trips needed by the overall WireGuard protocol. This change enables
us to prove strong authentication and key indistinguishability properties for the key exchange component of
WireGuard under standard cryptographic assumptions.

1 Introduction

WireGuard: WireGuard [11] was recently proposed by Donenfeld as a replacement for existing secure communica-
tions protocols like IPsec and OpenVPN. It has numerous benefits, not least its simplicity and ease of configuration,
high performance in software, and small codebase. Indeed, the protocol is implemented in less than 4,000 lines of
code, making it relatively easy to audit compared to large, complex and buggy code-bases typically encountered with
IPsec and SSL/TLS (on which OpenVPN is based).

From a networking perspective, WireGuard encapsulates IP packets in UDP packets, which are then further
encapsulated in IP packets. This is done carefully so as to avoid too much packet overhead. WireGuard also offers
a highly simplified version of IPsec’s approach to managing which security transforms get applied to which packets:
essentially, WireGuard matches on IP address ranges and associates IP addresses with static Diffie-Hellman keys. This
avoids much of the complexity associated with IPsec’s Security Associations/Security Policy Database mechanisms.

From a cryptographic perspective, WireGuard presents an interesting design. It is highly modular, with a key
exchange phase, called the handshake, that is presented as being clearly separated from the subsequent use of the
keys in a data transport protocol. A key feature is the one-round (or 1-RTT) nature of the key exchange phase. The
key exchange phase runs between an initiator and a responder. It combines long-term and ephemeral Diffie-Hellman
values, exclusively using Curve25519 [3], and is built from the Noise protocol framework [22]. In fact, every possible
pairwise combination of long-term and ephemeral values is involved in the key computations, presumably in an
effort to strengthen security in the face of various combinations of long-term and ephemeral private key compromise.
The long-term keys are not supported by a PKI, but are instead assumed to be pre-configured and known to
the communicating parties (or trusted on first use, as per SSH). The protocol specification includes an option for
using preshared keys between pairs of parties, to augment the DH-based exchange and as a hedge against quantum
adversaries. The key exchange phase relies on the BLAKE2s hash function [2] for hashing parts of the transcript,
to build HMAC (a hash-based MAC algorithm), and for HKDF (an HMAC-based key derivation function). The
data transport protocol uses solely ChaCha20-Poly1305 as specified in RFC 7539 [21] as an AEAD scheme in a
lightweight packet format. The AEAD processing incorporates explicit sequence numbers and the receiver uses a
standard sliding window technique to deal with packet delays and reorderings.



Security of WireGuard: To the best of our knowledge, with the exception of an initial and high-level sym-
bolic analysis,1 WireGuard has received no rigorous security analysis. In particular, it has not benefitted from any
computational (as opposed to symbolic) proofs. In this paper, we provide such an analysis.

We cannot prove the handshake protocol (as presented in [11]) secure because of an unfortunate reliance on the
first message sent in the subsequent data transport protocol to provide entity authentication of the initiator to the
responder. Without this extra message, there is a simple Key Compromise Impersonation (KCI) attack, violating
a desirable authentication goal of the protocol. This attack was already pointed out by Donenfeld in [11]. Strictly
speaking, it means that the key exchange phase is not 1-RTT (as the responder cannot safely send data to the
initiator until it has received a verified data transport message from the initiator). We show that there is also an
attack on the forward secrecy of the protocol in the same KCI setting, similar to observations made by Krawczyk
in [17]. Such an attack recovers session keys rather than breaking an authentication property, and is arguably more
serious. However, the attack requires a very particular set of compromise capabilities on the part of the attacker, so
we regard it more as a barrier to obtaining strong security proofs than as a practical attack.

On the other hand, if we take the extra message required to prevent the KCI attack of [11] and our new
attack into account, it becomes impossible to prove the usual key indistinguishability (KI) property desired of a
key exchange protocol (and which, broadly speaking, guarantees that it can be securely composed with subsequent
use of the keys [9]). This is because the data transport protocol uses the very keys that we would desire to prove
indistinguishable from random to AEAD-protect potentially known plaintexts. Such issues are well-known in the
analysis of real-world secure communications protocols – they are endemic, for example, in the analysis of SSL/TLS
prior to version 1.3 [20, 15, 18].

There are two basic approaches to solving this problem: analyse the entire protocol (handshake and data trans-
port) as a monolithic entity, or modify the protocol to provide a proper key separation between keys used in the
handshake to provide authentication and keys used in the data transport layer. The former approach has been suc-
cessfully applied (see for example the ACCE framework of [15]) but is complex, requires models highly tuned to the
protocol, and results in quite unwieldy proofs. The latter approach makes for easier analysis and highlights better
what needs to be considered to be part of the key exchange protocol in order to establish its security, but necessitates
changes to the protocol.
Our contributions: In this paper, we adopt the latter approach, making minimally invasive changes to WireGuard
to enable us to prove its security.

In more detail, we work with a security model for key exchange based on that of Cremers and Feltz [10] but
extended to take into account WireGuard’s preshared key option. The model allows us to handle a full range of
security properties in one clean sweep, including authentication, regular key indistinguishability, forward security, and
KCI attacks (including advanced forms in which key security is considered). The model considers a powerful adversary
who is permitted to make every combination of ephemeral and honestly-generated long-term key compromise bar
those allowing trivial attacks, and who is able to interact with multiple parties in arbitrary numbers of protocol runs.

We build a description of WireGuard’s key exchange phase that takes into account all of its main cryptographic
features, including the fine details of its many key derivation and (partial) transcript hashing steps. However, in-
line with our choice of how to handle the KI/modularity problem, we make a small modification to the handshake
protocol, adding an extra flow from initiator to responder which explicitly authenticates one party to the other.
This job is currently fulfilled by the first packet from initiator to responder in the data transport protocol. With
this modification in place, we are then able to prove the security of WireGuard’s key exchange protocol under
fairly standard cryptographic assumptions, in the standard model. Specifically, our proof relies on a PRFODH
assumption [15, 8] (alternatively, we could have chosen to work with gap-DH and the Random Oracle Model).
Roadmap: Section 2 provides preliminary definitions, mostly focussed on security notions for the base primitives
used in WireGuard. Section 3 describes the WireGuard handshake protocol. Section 4 presents the security model
for key exchange that we use in Section 5, where our main security result, Theorem 1, can be found. We wrap up
with conclusion and future work in Section 6.

2 Preliminaries

Here we formalise the security assumptions that we will be using in our analysis of WireGuard, specifically re-
stating the security assumptions for pseudo-random function (PRF) security, for Authenticated-Encryption with
1 https://www.wireguard.com/papers/wireguard-formal-verification.pdf
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Associated Data (AEAD) schemes. We use an asymptotic approach, relying on primitives that are parameterised
with a security parameter λ; all our definitions and results can be made concrete at the expense of using extended
notation. In later sections, we will suppress all dependence on λ in our naming of primitives to ease the notation.

We let G = 〈g〉 denote a finite cyclic group of prime order q that is generated by g. We utilise different typefaces
to represent distinct objects: algorithms (such as an adversary A and a challenger C in a security game), adversarial
Queries (such as Test or Reveal), protocol and per-session variables (such as a public-key / secret-key pair (pk, sk),
definitions for security notions (such as coll or aead), and constant protocol values (such as InitiatorHello and
ResponderHello).

Definition 1 (prf Security). A pseudo-random function family is a collection of deterministic functions PRF =
{PRFλ : K × I → O : λ ∈ N}, one function for each value of λ. Here, K, I, O all depend on λ, but we suppress
this for ease of notation. Given a key k in the keyspace K and a bit string m ∈ M, PRFλ outputs a value y in the
output space O = {0, 1}λ. We define the security of a pseudo-random function family in the following game between
a challenger C and a PPT adversary A, with λ as an implicit input to both algorithms:

1. C samples a key k $← K and a bit b uniformly at random.
2. A can now query C with polynomially-many distinct mi values, and receives either the output yi ← PRFλ(k,mi)

(when b = 0) or yi
$← {0, 1}λ (when b = 1).

3. A terminates and outputs a bit b′.

We say that A wins the PRF security game if b′ = b and define the advantage of a PPT algorithm A in breaking the
pseudo-random function security of a PRF family PRF as Advprf

PRF,A(λ) = |2 · Pr(b′ = b) − 1|. We say that PRF is
secure if for all PPT algorithms A, Advprf

PRF,A(λ) is negligible in the security parameter λ.

We define authentication security for AEAD, as introduced by [23], often referred to as integrity for AEAD.

Definition 2 (aead-auth Security). An AEAD scheme AEAD is a tuple of algorithms AEAD = {KeyGen,Enc,Dec}
associated with spaces for keys K, nonces N ∈ {0, 1}l, messagesM∈ {0, 1}∗ and headers H ∈ {0, 1}∗. These sets all
depend on the security parameter λ. We denote by AEAD.KeyGen(λ) → k a key generation algorithm that takes as
input λ and outputs a key k ∈ K. We denote by AEAD.Enc(k,N,H,M) the AEAD encryption algorithm that takes as
input a key k ∈ K, a nonce N ∈ N , a header H ∈ H and a messageM ∈M and outputs a ciphertext C ∈ {0, 1}∗. We
denote by AEAD.Dec(k,N,H,C) the AEAD decryption algorithm that takes as input a key k ∈ K, a nonce N ∈ N , a
header H ∈ H and a ciphertext C and returns a string M ′, which is either in the message spaceM or a distinguished
failure symbol ⊥. Correctness of an AEAD scheme requires that AEAD.Dec(k,N,H,AEAD.Enc(k,N,H,M)) = M
for all k,N,H,M in the appropriate spaces.

Let AEAD be an AEAD scheme, and A a PPT algorithm with input λ and access to an oracle Enc(·, ·, ·). This
oracle, given input (N,H,M), outputs Enc(k,N,H,M) for a randomly selected key k ∈ K. We say that A forges a
ciphertext if A outputs (N,H,C) such that Dec(k,N,H,C)→M 6= ⊥ and (N,H,M) was not queried to the oracle.
We define the advantage of a PPT algorithm A in forging a ciphertext as Advaead-auth

AEAD,A (λ). We say that an AEAD
scheme AEAD is aead-auth-secure if for all PPT algorithms A Advaead-auth

AEAD,A (λ) is negligible in the security parameter
λ.

We now introduce the PRFODH assumption that will be needed for our analysis of WireGuard. The first version of
this assumption was introduced by [15] in order to prove the TLS-DHE handshake secure in the standard model. This
was subsequently modified in later works analysing real-world protocols, such as TLS-RSA [18], the in-development
TLS 1.3 [12, 13], and the Extended Access Control Protocol [7]. This assumption was generalised in [8] in order to
capture the different variants of PRFODH in a parameterised way. We give the formulation from [8] verbatim below:

Definition 3 (Generic PRFODH Assumption). Let G be a cyclic group of order q with generator g (where G, q
and g all implicitly depend on λ). Let PRFλ : G×M→ K be a function from a pseudo-random function family that
takes a group element k ∈ G and a salt value m ∈ M as inputs, and outputs a value y ∈ K. We define a security
notion lr-PRFODH security which is parameterised by l, r ∈ {n, s,m} indicating how often the adversary is allowed to
query certain “left” and “right” oracles (ODHu and ODHv respectively), where n indicates that no query is allowed, s
that a single query is allowed, and m that multiple (polynomially many) queries are allowed to the respective oracle.
Consider the following security game between a challenger C and a PPT adversary A, both running on input λ.
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1. The challenger C samples u $← Zq and provides G, g and gu to the adversary A.
2. If l = m, A can issue arbitrarily many queries to the oracle ODHu. These queries are handled as follows: on

a query of the form (S, x), the challenger first checks if S /∈ G and returns ⊥ if this is the case. Otherwise, it
computes y ← PRFλ(Su, x) and returns y.

3. Eventually, A issues a challenge query x∗. On receipt of this query, C samples v $← Zq and a bit b ← {0, 1}
uniformly at random. It then computes y0 = PRFλ(guv, x∗) and samples y1

$← {0, 1}λ uniformly at random. The
challenger returns (gv, yb) to A.

4. Next, A may issue (arbitrarily interleaved) queries to oracles ODHu and ODHv (depending on l and r). These
queries are handled as follows:
– ODHu oracle. The adversary A may ask zero (if l = n), a single (if l = s), or arbitrarily many (if l = m)

queries to this oracle. On a query of the form (S, x), the challenger first checks if S /∈ G or if (S, x) = (gv, x∗)
and returns ⊥ if either holds. Otherwise, it returns y ← PRFλ(Su, x).

– ODHv oracle. The adversary A may ask zero (if r = n), a single (if r = s), or arbitrarily many (if r = m)
queries to this oracle. On a query of the form (T, x), the challenger first checks if T /∈ G or if (S, x) = (gu, x∗)
and returns ⊥ if either holds. Otherwise, it returns y ← PRF(T v, x).

5. At some point, A stops and outputs b′ ∈ {0, 1}.

We say that the adversary wins the lr-PRFODH game if b′ = b and define the advantage function

Advlr-PRFODH
PRF,G,q,A(λ) = Pr(b′ = b).

We say that the lr-PRFODH assumption holds if the advantage Advlr-PRFODH
PRF,G,q,A(λ) of any PPT adversary A is negligible.

We extend the definition from [8] similarly to [12]: compared to [8] we allow the adversary access to ODHu and
ODHv oracles before the adversary issues the challenge query x∗. This generalisation is necessary in our analysis of
WireGuard, because public ephemeral DH values are used to compute a salt value that is used as an input to a PRF
during the key computations. We refer to our extension as the symmetric generic PRFODH assumption.

Definition 4 (Symmetric generic PRFODH Assumption). Let G be a cyclic group of order q with generator
g (where G, q and g all implicitly depend on λ). Let PRFλ : G ×M → K be a function from a pseudo-random
function family that takes a group element k ∈ G and a salt value m ∈ M as input, and outputs a value y ∈ K.
We define a security notion, sym-lr-PRFODH security, which is parameterised by: l, r ∈ {n, s,m} indicating how often
the adversary is allowed to query “left” and “right” oracles (ODHu and ODHv), where n indicates that no query
is allowed, s that a single query is allowed, and m that multiple (polynomially many) queries are allowed to the
respective oracle. Consider the following security game asym-lr-PRFODH

PRF,A between a challenger C and a PPT adversary
A, both running on input λ.

1. The challenger C samples u, v $← Zq and provides G, g, gu, gv to the adversary A.
2. If l = m, A can issue arbitrarily many queries to oracle ODHu, and if r = m and sym = Y to the oracle ODHv.

These are implemented as follows:
– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G and returns ⊥ if this is the case.

Otherwise, it computes y ← PRFλ(Su, x) and returns y.
– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G and returns ⊥ if this is the case.

Otherwise, it computes y ← PRFλ(T v, x) and returns y.
3. Eventually, A issues a challenge query x∗. It is required that, for all queries (S, x) to ODHu made previously,

if S = gv, then x 6= x∗. Likewise, it is required that, for all queries (T, x) to ODHv made previously, if T = gu,
then x 6= x∗. This is to prevent trivial wins by A. C samples a bit b $← {0, 1} uniformly at random, computes
y0 = PRFλ(guv, x∗), and samples y1

$← {0, 1}λ uniformly at random. The challenger returns yb to A.
4. Next, A may issue (arbitrarily interleaved) queries to oracles ODHu and ODHv. These are handled as follows:

– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G or if (S, x) = (gv, x∗) and returns
⊥ if either holds. Otherwise, it returns y ← PRFλ(Su, x).

– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G or if (S, x) = (gu, x∗) and returns
⊥ if either holds. Otherwise, it returns y ← PRFλ(T v, x).

5. At some point, A outputs a guess bit b′ ∈ {0, 1}.
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We say that the adversary wins the sym-lr-PRFODH game if b′ = b and define the advantage function

Advsym-lr-PRFODH
PRF,G,q,A (λ) = |2 · Pr(b′ = b)− 1|.

We say that the sym-lr-PRFODH assumption holds if the advantage Advsym-lr-PRFODH
PRF,G,q,A (λ) of any PPT adversary A is

negligible.

3 The WireGuard Protocol

The WireGuard protocol is, as presented in [11]2, cleanly separated into two distinct phases:

– A key exchange or handshake phase, where users exchange ephemeral elliptic-curve Diffie-Hellman values, as well
as encrypted long-term Diffie-Hellman values and compute AEAD keys; and

– A data transport phase, where users may send authenticated and confidential transport data under the previously
computed AEAD keys.

The handshake phase is a 1-RTT protocol in which users maintain the following set of variables:

– A randomly-sampled session identifier IDρ for each user in the session (i.e we use IDi to refer to the session
identifier of the initiator and for the responder we refer to IDr).

– An updating seed value Ck, is used to seed the key-derivation function at various points during the key-exchange.
– An updating hash value Hk, is used to hash subsets of the transcript together, to bind the computed AEAD

keys to the initial key-exchange.
– A tuple of AEAD keys that are used for confidentiality of the long-term key of the initiator, and to authenticate

hash values.
– Long-term elliptic-curve Diffie-Hellman keys gu, gv of initiator and responder, respectively.
– Ephemeral elliptic-curve Diffie-Hellman keys gx, gy of initiator and responder, respectively.
– Optional long-term preshared key psk.

In Figure 1 we describe the computations required to construct the key exchange messages, which we refer to as
InitiatorHello and ResponderHello. For conciseness, we do not include the chaining steps required to compute
the various Ck and Hk values throughout the protocol (we instead list them in Table 1). Nor do we make explicit
the verification of the mac1, mac2 MAC values nor the time, zero AEAD values, but assume that they are correctly
verified before deriving the session keys tki and tkr.

k Seed value Ck Key κk Hash value Hk

1 H(label1) ∅ H(C1‖label2)
2 (C1, g

x, 1) ∅ H(H1‖gv)
3 (C2, g

xv, 1) (C2, g
xv, 2) H(H2‖gx)

4 (C3, g
uv, 1) (C3, g

uv, 2) H(H3‖ltk)
5 ∅ ∅ H(H4‖time)
6 (C4, g

y, 1) ∅ H(H5‖gy)
7 (C6, g

xy, 1) ∅ ∅
8 (C7, g

uy, 1) ∅ ∅
9 (C8, psk, 1) (C8, psk, 3) H(H6‖KDF(C8, psk, 2))
10 ∅ ∅ H(H9‖zero)

Table 1: A detailed look at the computation of the chaining seed (Ck) and hash (Hk) values, as well as the intermediate
AEAD keys (κk) used in the WireGuard Key-Exchange protocol. Note that unless otherwise specified, the triples
(X,Y, Z) in the table are used in that order as the inputs to a key-derivation function KDF(X,Y, Z) (so X is used as
the keying material, Y is the salt value and Z the index of the output key) to compute the relevant values. Finally,
we denote with ∅ values that are not used during protocol execution.

2 And in the updated version at https://www.wireguard.com/papers/wireguard.pdf that we rely on hereafter.
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Initiator Responder

(x, gx) $← DHGen, epki ← gx, sidi = IDi
$← {0, 1}32

ltk = AEAD(κ3, 0, gu, H3)
now ← Timestamp()
time← AEAD.Enc(κ4, 0, H4, now)
mac1← MAC(H(label3‖gv), type‖03‖sidi‖epki‖ltk‖time)
mac2← MAC(cookie, type‖03‖sidi‖epki‖ltk‖time‖mac1)
InitiatorHello← type‖03‖sidi‖epki‖ltk‖time‖mac1‖mac2

InitiatorHello

(y, gy) $← DHGen, epkr ← gy, sidr = IDr
$← {0, 1}32

zero← AEAD.Enc(κ9, 0, H9, ∅)
mac1← MAC(H(label3‖gu), type‖03‖sidr‖sidi‖epkr‖zero)

mac2← MAC(cookie, type‖03‖sidr‖sidi‖epkr‖zero‖mac1)
ResponderHello← type‖03‖sidr‖sidi‖epkr‖zero‖mac1‖mac2

ResponderHello

tki ← KDF(C9, ∅, 1)
tkr ← KDF(C9, ∅, 2)

Fig. 1: A brief overview of the WireGuard Key-Exchange Protocol. For more details on the computation of the
chaining seed (Ck), hash (Hk) and intermediate key (κk) values, refer to Table 1. Note that all verifications of MAC
and AEAD values are left implicit, but are obviously crucial to security.

3.1 Remarks on the Protocol

As noted in the introduction (and noted by Donenfeld [11]), it is clear that WireGuard’s 1-RTT handshake taken
in isolation is not secure in the KCI setting. This is because an attacker in possession of the responder’s long-term
private DH value v can construct the first protocol message and thence impersonate the initiator to the responder.
Our attack in Section 5.1 extends this authentication attack to a session key recovery attack. WireGuard protects
against this kind of KCI attack by requiring the first data transport message to be sent by the initiator and the
responder to check the integrity of this message. Strictly speaking, then, the first data transport message should be
regarded as part of the handshake, making it no longer 1-RTT.

An attractive aspect of WireGuard (from a provable security standpoint) is that it is “cryptographically opin-
ionated”, meaning that the protocol has no algorithm negotiation functionality — all WireGuard sessions will use
Curve25519 for ECDH key exchange, BLAKE2 as the underlying hash function that builds both HMAC and HKDF,
and ChaCha20-Poly1305 as the AEAD encryption scheme. As is known from the analysis of SSL/TLS,[1, 4, 5, 14] and
more generally [16], such negotiation mechanisms can lead to downgrade attacks that can fatally undermine security
especially if a protocol supports both weak and strong cryptographic options. This decision to avoid ciphersuite
negotiation simplifies the analysis of WireGuard.

Surprisingly, the full key exchange transcript is not authenticated by either party — the mac1 and mac2 values are
keyed with public values H(label3‖gv) and cookie and thus can be computed by an adversary. While the hash values
H3, H4 and H9 are headers in AEAD ciphertexts, these H values do not contain all of the transcript information
— the session identifiers sidi and sidr are not involved in either the seed or hash chains. This then limits the
options for analysing WireGuard, as we cannot hope to show full transcript authentication properties. It would be
a straightforward modification to include the session identifiers in the derivation of the session keys and thus bind
the session identifiers to the session keys themselves. One could argue that the lack of binding between transcripts
and output session keys has facilitated attacks on SSL/TLS, such as the Triple Handshake attack [6], and so a small
modification to the inputs of the chaining values C and hash values H would strengthen the security of the protocol.

4 Security Model

We propose a modification to the eCK-PFS security model introduced by Cremers and Feltz [10] that incorporates
preshared keys and strengthens the security definitions accordingly. We explain the framework and give an algorithmic
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description of the security model in Section 4.1, and describe the corruption abilities of the adversary in Section 4.2.
We then describe the modifications necessary to capture the exact security guarantees that WireGuard attempts
to achieve by explaining the differences between our partnering definitions and traditional notions of partnering in
Section 4.3. We then give our modified cleanness definitions in Section 4.4. Given that WireGuard uses a mix of
long-term identity keys, ephemeral keys and preshared secrets in its key exchange protocol, it is appropriate to use
an extended-Canetti-Krawcyzk model (as introduced in [19]), wherein the adversary is allowed to reveal subsets of
these secrets. It is claimed in [11] that WireGuard “achieves the requirements of authenticated key exchange (AKE)
security, avoids key-compromise impersonation, avoids replay attacks, provides perfect forward secrecy,” [11]. These
are all notions captured by our extended eCK-PFS model, so our subsequent security proof will formally establish
that WireGuard meets its goals.

4.1 Execution Environment

Consider an experiment ExpeCK-PFS-PSK
KE,nP ,nS ,A (λ) played between a challenger C and an adversary A. C maintains a set

of nP parties P1, . . . , PnP
(representing users interacting with each other via the protocol), each capable of run-

ning up to nS sessions of a probabilistic key-exchange protocol KE, represented as a tuple of algorithms KE =
(f,ASKeyGen,PSKeyGen,EPKeyGen). We use πsi to refer to both the identifier of the s-th instance of the KE being
run by party Pi and the collection of per-session variables maintained for the s-th instance of KE run by Pi. We
describe the algorithms below:

KE.f(λ, pki, ski, π,m) $→ (m′, π′) is a (potentially) probabilistic algorithm that takes a security parameter λ, the
long-term asymmetric key pair pki, ski of the party Pi, a collection of per-session variables π and an arbitrary bit
string m ∈ {0, 1}∗ ∪ {∅}, and outputs a response m′ ∈ {0, 1}∗ ∪ {∅} and an updated per-session state π′, acting in
accordance with an honest protocol implementation.

KE.ASKeyGen(λ) $→ (pk, sk) is a probabilistic asymmetric-key generation algorithm taking as input a security
parameter λ and outputting a public-key/secret-key pair (pk, sk).

KE.PSKeyGen(λ) $→ (psk, pskid) is a probabilistic symmetric-key generation algorithm that also takes as input
a security parameter λ and outputs a symmetric preshared secret key psk and (potentially) a preshared secret key
identifier pskid.

KE.EPKeyGen(λ) $→ (ek, epk) is a probabilistic ephemeral-key generation algorithm that also takes as input a
security parameter λ and outputs an asymmetric public-key/secret-key pair (ek, epk).
C runs KE.ASKeyGen(λ) nP times to generate a public-key/secret-key pair (pki, ski) for each party Pi ∈ {P1, . . . , PnP

}
and delivers all public-keys pki for i ∈ {1, . . . , nP } to A. The challenger C then randomly samples a bit b $← {0, 1}
and interacts with the adversary via the queries listed in Section 4.2. Eventually, A terminates and outputs a guess
b′ of the challenger bit b. The adversary wins the eCK-PFS-PSK key-indistinguishability experiment if b′ = b, and
additionally if the session πsi such that Test(i, s) was issued satisfies a cleanness predicate clean, which we discuss in
more detail in Section 4.4. We give an algorithmic description of this experiment in Figure 2.

Each session maintains the following set of per-session variables:

– ρ ∈ {init, resp} – the role of the party in the current session. Note that parties can be directed to act as init
or resp in concurrent or subsequent sessions.

– pid ∈ {1, . . . , nP , ?} – the intended communication partner, represented with ? if unspecified. Note that the
identity of the partner session may be set during the protocol execution, in which case pid can be updated once.

– ms ∈ {0, 1}∗ ∪ {⊥} – the concatenation of messages sent by the session, initialised by ⊥.
– mr ∈ {0, 1}∗ ∪ {⊥} – the concatenation of messages received by the session, initialised by ⊥.
– kid ∈ {0, 1}∗ ∪ {⊥} – the concatenation of public keyshare information received by the session, initialised by ⊥.
– α ∈ {active, accept, reject,⊥} – the current status of the session, initialised with ⊥.
– k ∈ {0, 1}∗ ∪ {⊥} – the computed session key, or ⊥ if no session key has yet been computed.
– ek ∈ {0, 1}∗ × {0, 1}∗ ∪ {⊥} – the ephemeral key pair used by the session during protocol execution, initialised

as ⊥.
– psk ∈ {0, 1}∗×{0, 1}∗ ∪{⊥} – the preshared secret and identifier used by the session during protocol execution,

initialised as ⊥.
– st ∈ {0, 1}∗ – any additional state used by the session during protocol execution.
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ExpeCK-PFS-PSK-ind
KE,clean,nP ,nS ,A(λ):

1: b $← {0, 1}
2: tested← false
3: for i = 1 to nP do
4: (pki, ski)

$← ASKeyGen(λ)
5: ASKflagi ← clean
6: PSKi[1], . . . ,PSKi[nP ]← ⊥
7: PSKflagi[1], . . . ,PSKflagi[nP ]← ⊥
8: EPKflagi[1], . . . ,EPKflagi[nS ]← ⊥
9: RSKflagi[1], . . . ,RSKflagi[nS ]← ⊥
10: ctri ← 0
11: end for
12: b′ $← ASend,Create∗,Corrupt∗,Reveal,Test(pk1, . . . , pknP )
13: if clean(πs

i ) ∧ (b = b′) then
14: return 1
15: else
16: return 0
17: end if

Create(i, j, role):
1: ctri ← ctri + 1
2: s← ctri

3: πs
i .pid← j

4: πs
i .ρ← role

5: πs
i .ek ← KE.EPKeyGen(λ)

6: πs
i .psk ← PSKi[j]

7: return (i, s)

Send(i, s,m):
1: if πs

i = ⊥ then
2: return ⊥
3: else
4: πs

i .mr ← πs
i .mr‖m

5: (πs
i ,m

′)← KE.f(λ, pki, ski, π
s
i ,m)

6: πs
i .ms ← πs

i .ms‖m′
7: πs

i .T ← πs
i .T‖m‖m′

8: return m′

9: end if

CreatePSK(i, j):
1: if (i = j) ∨ (PSKflagi[j] 6= ⊥) then
2: return ⊥
3: end if
4: (psk, pskid)← KE.PSKeyGen(λ)
5: PSKi[j]← (psk, pskid)
6: PSKj [i]← (psk, pskid)
7: PSKflagi[j],PSKflagj [i]← clean
8: if pskid 6= ∅ then
9: return pskid
10: else
11: return >
12: end if

Reveal(i, s):

1: if πs
i .α 6= accept then

2: return ⊥
3: else
4: RSKflagi[s] ← corrupt

5: return πs
i .k

6: end if

CorruptASK(i):

1: ASKflagi ← corrupt
2: return ski

CorruptEPK(i, s):

1: EKflagi[s]← corrupt
2: return πs

i .ek

CorruptPSK(i, j):

1: if PSKi[j] = ⊥ then
2: return ⊥
3: end if
4: if PSKflagi[j] 6= clean

then
5: return ⊥
6: else
7: PSKflagi[j] ← corrupt

8: PSKflagj [i] ← corrupt

9: return PSKi[j]
10: end if

Test(i, s):
1: if (tested = true) ∨ (πs

i .α 6= accept) then
2: return ⊥
3: end if
4: tested← true
5: if b = 0 then
6: return πs

i .k
7: else
8: k

$← K
9: return k
10: end if

Fig. 2: eCK-PFS-PSK experiment for adversary A against the key-indistinguishability security of protocol KE.
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Finally, the challenger manages the following set of corruption registers, which hold the leakage of secrets that
A has revealed.

– preshared keys {PSKflagi,PSKflag2, . . . , PSKflagnP
} where for each element PSKflagi[j] ∈ PSKflagi, PSKflagi[j] ∈

{corrupt, clean,⊥} ∀ i, j ∈ [nP ] and PSKflagi[j] = ⊥ for i = j
– long-term keys {SKflag1, . . . ,SKflagnP

}, where SKflagi ∈ {corrupt, clean,⊥} ∀ i ∈ [nP ]
– ephemeral keys {EKflag1, . . . ,EKflagnP

}, where EKflagi[s] ∈ {corrupt, clean,⊥} ∀ i ∈ [nP ] and s ∈ [nS ].

We formalise the advantage of a PPT algorithm A in winning the eCK-PFS-PSK key indistinguishability experi-
ment in the following way:

Definition 5 (eCK-PFS-PSK Key Indistinguishability). Let KE be a key-exchange protocol, and nP , nS ∈ N.
For a particular given predicate clean, and a PPT algorithm A, we define the advantage of A in the eCK-PFS-PSK
key-indistinguishability game to be:

AdveCK-PFS-PSK,clean
KE,nP ,nS ,A (λ) = |Pr[ExpeCK-PFS-PSK,clean

KE,nP ,nS ,A (λ) = 1]− 1
2 |.

We say that KE is eCK-PFS-PSK-secure if, for all A, AdveCK-PFS-PSK,clean
KE,nP ,nS ,A (λ) is negligible in the security parameter λ.

4.2 Adversarial Interaction

Our security model is intended to be as generic as possible, in order to capture eCK-like security notions, but to
also include long-term preshared keys. This would allow our model to be used in analysing (for example) the Signal
protocol, where users exchange both long-term Diffie-Hellman keyshares used in many protocol executions, but also
many ephemeral Diffie-Hellman keyshares that are only used within a single session. Another example would be TLS
1.3, where users may have established preshared keys to reduce the protocol’s computational overheads, or to enable
0-RTT confidential data transmission.

Our attacker is a standard key-exchange model adversary, in complete control of the communication network,
able to modify, inject, delete or delay messages. They can also compromise several layers of secrets:

– long-term private keys, modelling the misuse or corruption of long-term secrets in other sessions, and additionally
allowing our model to capture forward-secrecy notions.

– ephemeral private keys, modelling the use of bad randomness generators.
– preshared symmetric keys, modelling the leakage of shared secrets, potentially due to the misuse of the preshared

secret by the partner, or the forced later revelation of these keys.
– session keys, modelling the leakage of keys by their use in bad cryptographic algorithms.

The adversary interacts with the challenger via the following adversarial queries. An algorithmic descriptions of
how the challenger responds is in Figure 2.

– Create(i, j, role) → {(i, s),⊥}: allows the adversary to begin new sessions. The challenger C creates a new
session πsi with πsi .pid ← j, πsi .ρ ← role, πsi .α ← active, πsi .T ← ⊥, πsi .sid ← ⊥, πsi .k ← ⊥. C also computes
KE.EKeyGen(λ) $→ (ek, epk) and sets πsi .ek ← ek. If a session πsi has already been created, C returns ⊥. Otherwise,
C returns (i, s) to A.

– CreatePSK(i, j) → {pskid,>,⊥}: allows the adversary to direct parties to generate a preshared key for use in
future protocol executions. The challenger C checks that i 6= j and that PSKi[j] = PSKj [i] = ⊥. C then computes
KE.PSKeyGen(λ) $→ psk and sets PSKi[j] = PSKj [i]← psk, and the PSK register PSKflagi[j] = PSKflagj [i]←
clean. If pskid 6= ∅, then C returns pskid to A, otherwise C returns > (where > is a generic success flag) to A.
If PSKi[j] 6= ⊥ or PSKj [i] 6= ⊥ (i.e. if A has previously issued a CreatePSK(i, j) or CreatePSK(j, i) query), then
C returns ⊥ to A.

– Reveal(i, s): allows the adversary access to the secret session key computed by a session during protocol execution.
The challenger checks whether the cleanness of the session πsi has been upheld and πsi .α = accept and if so,
returns πsi .k to A. Otherwise, C returns ⊥ to A.
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– CorruptPSK(i) → {psk,⊥}: allows the adversary access to the secret preshared key jointly shared by parties
prior to protocol execution. The challenger C checks that PSKi[j] = PSKj [i] 6= ⊥, and that PSKflagi[j] =
PSKflagj [i] = clean. If so, C returns PSK ← PSKi[j] to A and sets PSKflagi[j] = PSKflagj [i]← corrupt. If
PSKi[j] = PSKj [i] = ⊥ or PSKflagi[j] = PSKflagj [i] 6= clean, (i.e. that the adversary has either not previously
created a psk between the two parties Pi and Pj , or has previously issued a CorruptPSK(i, j)/CorruptPSK(j, i)
query), then C returns ⊥ to A.

– CorruptASK(i)→ {ski,⊥}: allows the adversary access to the secret long-term key generated by a party prior to
protocol execution. The challenger C checks that ASKflagi 6= corrupt. If so, C returns ski to A. If ASKflagi =
corrupt (i.e. A has previously issued a CorruptASK(i) query), then C returns ⊥ to A.

– CorruptEPK(i, s) → {ek,⊥}: allows the adversary access to the secret ephemeral key generated by a session
during protocol execution. The challenger C checks that EPKflagi,s = clean. If so, C returns πsi .ek to A, and
sets EPKflagi,s ← corrupt. If EPKflagi,s = corrupt, (i.e. A has previously issued a CorruptEPK(i, s) query),
then C returns ⊥ to A.

– Send(i, s,m) → {m′,⊥}: allows the adversary to send messages to sessions for protocol execution and receive
their output. If a session πsi has not been previously created, or πsi .α 6= active, then C returns ⊥ to A. Otherwise,
C computes KE.f(λ,m, πsi )→ (m′, πsi ), sets πsi ← πsi

′, and returns m′ to A.
– Test(i, s) → {k,⊥}: sends the adversary a real-or-random session key used in determining the success of A in

the key-indistinguishability game. If a session πsi exists and πsi .α = accept, then the challenger C samples a key
k0

$← D where D is the distribution of the session key, and sets k1 ← πsi .k. C then returns kb (where b is the
random bit sampled during set-up) to A. If a session πsi does not exist, or πsi .α 6= accept, then C returns ⊥ to
A.

4.3 Partnering Definitions

In order to evaluate which secrets the adversary is able to reveal without trivially breaking the security of the protocol,
key-exchange models must define how sessions are partnered. Otherwise, an adversary would simply run a protocol
between two sessions, faithfully delivering all messages, Test the first session to receive the real-or-random key, and
Reveal the session partner’s key. If the keys are equal, then the Test key is real, and otherwise the session key has been
sampled randomly. BR-style key-exchange models traditionally use matching conversations in order to do this. When
introducing the eCK-PFS model, Cremers and Feltz [10] used the relaxed notion of origin sessions. However, both of
these are still too restrictive for analysing WireGuard, because this protocol does not explicitly authenticate the full
transcript. Instead, for WireGuard, we are concerned matching only on a subset of the transcript information – the
honest contributions of the keyshare and key-derivation materials. We introduce the notion of contributive keyshares
to capture this intuition.

Definition 6 (Contributive keyshares). Recall that πsi .kid is the concatenation of all keyshare material sent by
the session πsi during protocol execution. We say that πtj is a contributive keyshare session for πsi if πtj .kid is a
substring of πsi .mr.

This definition is protocol specific because πsi .kid is: in WireGuard πsi .kid consists only of the long-term public
Diffie-Hellman value and the ephemeral public Diffie-Hellman value provided by the initiator and responder; in TLS
1.3 (for example) it would consist of the long-term public keys, the ephemeral public Diffie-Hellman values and any
preshared key identifiers provided by the client and selected by the server.

4.4 Cleanness Predicates

We now define the exact combinations of secrets that an adversary is allowed to leak without trivially breaking the
protocol. The original cleanness predicate of Cremers and Feltz [10] allows the reveal of long-term secrets for the
test session’s party Pi at any time, which places us firmly in the setting where the adversary has key-compromise-
impersonation abilities, but only allowed the reveal of long-term secrets of the intended peer after the test session
has established a secure session, which captures perfect forward secrecy.

We now turn to modifying the cleanness predicate cleaneCK-PFS-PSK for the preshared secret setting.

Definition 7 (cleaneCK-PFS-PSK). A session πsi such that πsi .α = accept in the security experiment defined in Figure
2 is cleaneCK-PFS-PSK if all of the following conditions hold:
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1. The query Reveal(i, s) has not been issued.
2. For all (j, t) ∈ nP × nS such that πsi matches πtj, the query Reveal(j, t) has not been issued.
3. If PSKflagi[πsi .pid] = corrupt or πsi .psk = ⊥, the queries CorruptASK(i) and CorruptEPK(i, s) have not both

been issued.
4. If PSKflagi[πsi .pid] = corrupt or πsi .psk = ⊥, and for all (j, t) ∈ nP ×nS such that πtj is a contributive keyshare

session for πsi , then CorruptASK(j, t) and CorruptEPK(j, t) have not both been issued.
5. If there exists no (j, t) ∈ nP × nS such that πtj is a contributive keyshare session for πsi , CorruptASK(j) has not

been issued before πsi .α← accept.

We specifically forbid the adversary from revealing the long-term and ephemeral secrets if the preshared secret
between the test session and its intended partner has already been revealed. Since preshared keys are optional in
our framework, we also must consider the scenario where a preshared secret does not exist between the test session
πsi and its intended partner. Similarly, we forbid the adversary from revealing the long-term and ephemeral secrets
if there exists no preshared secret between the two parties. Finally, since WireGuard does not authenticate the full
transcript, but relies instead on implicit authentication of derived session keys based on secret information, we must
use our contributive keyshare partnering definition instead of the origin sessions of [10]. Like eCK-PFS, we capture
perfect forward secrecy under key-compromise-impersonation attack in condition 5, where the long-term secret of
the test session’s intended partner is allowed to be revealed only after the test session has accepted. Additionally,
we allow for the optional incorporation of preshared secrets in conditions 3 and 4, where the adversary falls back
to eCK-PFS leakage paradigm if the preshared secret between the test session and its peer either does not already
exist, or has been already revealed.

5 Security Analysis

In this section we examine the security implications of modelling the WireGuard handshake as a 1-RTT key exchange
protocol. We have already noted that this results in a KCI attack on the protocol, also observed in [11]. However,
we are able to demonstrate an arguably more serious attack on session key security in our eCK-PFS-PSK security
model that results from this modelling. We show the attack in Figure 3 and discuss it in Section 5.1. Making minor
modifications to the WireGuard handshake protocol will allow us to prove key-indistinguishability security in the
strong eCK-PFS-PSK model. Specifically, we will add a key-confirmation message generated by the initiator. We
describe the modified WireGuard handshake protocol in Section 5.2 and prove it secure in Section 5.3.

5.1 Attack on Forward-Secrecy Notions

We give a description of an attack on WireGuard as a 1-RTT protocol that is allowable within the eCK-PFS-PSK
security model. It uses the ability of the adversary to target perfect forward secrecy combined with key-compromise-
impersonation and results in full session key recovery. Specifically, it allows the adversary to corrupt the long-term
key of a responder session, and thus impersonate any party initiating a session to the corrupted party. Since we
model WireGuard as a 1-RTT key exchange protocol, we do not include the data transport message that would
otherwise authenticate the initiator to a responder session, and thus the responder has to accept the session as soon
as the responder has sent the ResponderHello message (this being the last message in the 1-RTT version of the
protocol). Afterwards, the adversary is permitted to corrupt the long-term key of the party that it is impersonating.
This enables it to compute the session key, and thus distinguish real session keys from random ones, breaking
eCK-PFS-PSK key indistinguishability. The exact details of this attack within the eCK-PFS-PSK security model can
be found in Figure 3.

Readers may argue that this attack is implausible in a real-world setting, and is entirely artificial, allowable only
because of the severe key compromises permitted in the security model. We tend to agree, and present the attack
here only as a means of illustrating that the WireGuard handshake protocol, as originally presented in its 1-RTT
form, is not only vulnerable to standard KCI attacks, but also to key recovery attacks, and therefore not directly
amenable to strong security proofs without incorporating additional messages as part of the handshake.

5.2 The Modified WireGuard Handshake

We note that in [11], the protection for a responder against KCI attacks is to wait for authenticated data transport
messages to arrive from the initiator. Incorporating this into the WireGuard handshake would make it impossible
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Initiator - (u, gu) Adversary Responder - (v, gv)

CorruptASK(r)

v

(z, gz) $← DHGen, epki ← gz, sidi
$← {0, 1}32

C1 = H(label1), H1 = H(C1‖label2)
C2 = KDF(C1, g

z, 1), H2 = H(H1‖gv)
C3, κ3 = KDF(C2, (gv)z, 2), H3 = H(H2‖gz)

ltk = AEAD(κ3, 0, gu, H3)
C4, κ4 = KDF(C3, (gu)v, 2), H4 = H(H3‖ltk)

now ← Timestamp(), time← AEAD(κ4, 0, H4, now)
mac1← MAC(H(label3‖gv), type‖03‖sidi‖epki‖ltk‖time)
mac2← MAC(cookie, type‖03‖sidi‖epki‖ltk‖time‖mac1)

InitiatorHello′

(y, gy) $← DHGen, epkr ← gy, sidr = IDr
$← {0, 1}32

zero← AEAD.Enc(κ3, 0, H9, ∅)
mac1← MAC(H(label3‖gu), type‖03‖sidr‖sidi‖epkr‖zero)

mac2← MAC(cookie, type‖03‖sidr‖sidi‖epkr‖zero‖mac1)

ResponderHello

tki, tkr ← KDF(C9, ∅, 2)

Responder accepted with no contributive keyshare session

Test(r)
tki‖tkr

CorruptASK(i)

u

C6 = KDF(C4, (gy, 1), H6 = H(H5‖gy)
C7 = KDF(C6, ((gy)z, 1)
C8 = KDF(C7, (gy)u, 1)

C9, tmp, κ9 = KDF(C8, PSK, 3)
tk′i, tk

′
r ← KDF(C9, ∅, 2)

output b = 1 if tk′i, tk′r = tki, tkr, b = 0 otherwise

Fig. 3: A description of our attack on WireGuard in the eCK-PFS-PSK security model.
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Initiator Responder

(x, gx) $← DHGen, epki ← gx, sidi = IDi
$← {0, 1}32

ltk = AEAD(κ3, 0, gu, H3)
now ← Timestamp()
time← AEAD.Enc(κ4, 0, H4, now)
InitiatorHello: type‖03‖sidi‖epki‖ltk‖time‖mac1‖mac2

InitiatorHello

(y, gy) $← DHGen, epkr ← gy, sidr = IDr
$← {0, 1}32

zero← AEAD.Enc(κ9, 0, H9, ∅)
ResponderHello← type‖03‖sidr‖sidi‖epkr‖zero‖mac1‖mac2

ResponderHello

C10, κ10 ← HKDF(C9, ∅, 2)
conf← AEAD.Enc(κ10, 0, H10, ∅)
mac1← MAC(H(label3‖gv), type‖03‖sidi‖sidr‖conf)
mac2← MAC(cookie, type‖03‖sidi‖sidr‖conf‖mac1)
SenderConf← type‖03‖sidi‖sidr‖conf‖mac1‖mac2

SenderConf

tki ← KDF(C10, ∅, 1)
tkr ← KDF(C10, ∅, 2)

Fig. 4: The modification to the WireGuard handshake that allows eCK-PFS-PSK security. The change is limited to
an additional SenderConf message that contains the value conf← AEAD(κ10, 0, ∅, H10). Except for the computation
of the new C10, κ10 values, all values are computed as in the original WireGuard handshake protocol, and can be
found in Table 1.
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to prove it secure with respect to a key indistinguishability security notion, however, because the session keys, being
used in the data transport protocol, would no longer remain indistinguishable from random when the subject of a
Test query.

As explained in the introduction, there are two basic ways of surmounting this obstacle: consider the protocol
(handshake and data transport) as a monolithic whole, or modify the protocol. We adopt the latter approach.

We present a modification to the WireGuard handshake protocol that allows us to prove notions of perfect
forward secrecy and defence against key-compromise impersonation attacks. Figure 4 shows the modified protocol,
denoted mWG. It adds a key-confirmation message sent from the initiator to the responder, computed using an extra
derived key κ10 used solely for this purpose.

Our modifications are minor (involving at most 5 extra symmetric key operations) and do not require an additional
round trip before either party can begin sending transport data, as the responder was already required to wait for
initiator-sent data before it was able to begin safely sending its own.

5.3 Security of the Modified WireGuard Handshake

This section is dedicated to proving our main result:

Theorem 1. The modified WireGuard handshake protocol mWG is eCK-PFS-PSK-secure with cleanness predicate
cleaneCK-PFS-PSK (capturing perfect forward secrecy and resilience to KCI attacks). That is, for any PPT algorithm
A against the eCK-PFS-PSK key-indistinguishability game (defined in Figure 2) AdveCK-PFS-PSK

mWG,cleaneCK-PFS-PSK,nP ,nS ,A(λ) is
negligible under the prf, auth-aead, sym-ms-PRFODH, sym-mm-PRFODH and ddh assumptions. More precisely:

AdveCK-PFS-PSK
mWG,nP ,nS ,A(λ) ≤ n2

PnS

(
Advsym-ms-PRFODH

G,q,HKDF,A (λ) + 4 · Advprf
HKDF,A(λ) + Advauth-aead

AEAD,A (λ)
)

+ n2
PnS

(
Advsym-ms-PRFODH

G,q,HKDF,A (λ) + 2 · Advprf
HKDF,A(λ) + Advauth-aead

AEAD,A (λ)
)

+ max
{(
n2
Pn

2
S

(
3 · Advprf

HKDF,A(λ)
))
,
(
n2
Pn

2
S

(
Advddh

G,q,A(λ) + 5 · Advprf
HKDF,A(λ)

)
,(

n2
Pn

2
S

(
Advsym-ms-PRFODH

HKDF,G,q,A (λ) + 3 · Advprf
HKDF,A(λ)

))
,(

n2
Pn

2
S

(
Advsym-mm-PRFODH

HKDF,G,q,A (λ) + 6 · Advprf
HKDF,A(λ)

))}
Note that for readability reasons, we drop the convention of including the cleanness predicate cleaneCK-PFS-PSK in
the advantage notation in what follows. We begin by dividing the proof into three separate cases (and denote with
AdveCK-PFS-PSK,Cl

mWG,nP ,nS ,A (λ) the advantage of the adversary in winning the key-indistinguishability game in Case l) where
the query Test(i, s) has been issued:

1. The session πsi (where πsi .ρ = init) has no contributive keyshare session.
2. The session πsi (where πsi .ρ = resp) has no contributive keyshare session.
3. The session πsi has a contributive keyshare session.

It follows then that AdveCK-PFS-PSK
mWG,nP ,nS ,A ≤

(
AdveCK-PFS-PSK,C1

mWG,nP ,nS ,A (λ) + AdveCK-PFS-PSK,C2
mWG,nP ,nS ,A (λ) + AdveCK-PFS-PSK,C3

mWG,nP ,nS ,A (λ)
)
. We

then bound the probability of each case, and show that under certain assumptions, the probability of the adversary
winning in the key-indistinguishability game is negligible.

In the first two cases, we show that the adversary’s probability in getting the session πsi to reach an “accept”
state (and thus generate keys used in the real-or-random key indistinguishability game) is negligible, and since the
adversary cannot cause the test session πsi to reach the accept state, the experiment will act identically regardless
of whether the test bit b is 0 or 1, and thus the adversary’s probability in winning the key indistinguishability game
is negligble.

In the third case, we show that under certain assumptions, replacing the session keys with uniformly random,
independent keys from the same distribution has a negligible chance of being detected and thus, the adversary’s
advantage in distinguishing the real-or-random key-indistinguishability game is also negligible. We begin with the
first case.
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Case 1: Test init session without contributive keyshare session In this case we bound the probability that
a test initiator session will accept when there exists no contributive keyshare session. Recall that a contributive
keyshare session πtj exists for a session πsi when πtj .kid is a substring of πsi .mr. Informally, the test session πsi has
not received keying material from an honest partner session, having either been modified or injected wholesale by
the adversary.

Proof Sketch We begin first by adding an abort rule that triggers if there is ever a hash collision during the
challenger’s execution of any honest session. We follow by guessing the index of the test session, and adding an
abort event that occurs if a Test query is directed to a session that does not have the index of the guessed session,
and similarly, guess the party index of the intended partner session. Afterwards, we add another abort event that
occurs if the guessed test session πsi reaches the reject status. Since we already abort if the guessed session is not
the session indicated by the Test query, and if the session πsi has reached the reject status, the Test(i, s) query will
always respond with ⊥, there is no difference in the adversary’s advantage in the two games - any further queries
that the adversary makes is responded to identically regardless of the sampling of the random test bit b.

We define an abort event abortaccept that will occur if πsi ← accept. The following games then are designed to
bound the probability of abortaccept occuring to be negligibly close to zero. Note that from this game onwards, the
adversary is unable to make a CorruptASK(j) query, since we now abort the game when the session πsi reaches a
status that is not active, and by the Case 1 definition (a test session without a contributive keyshare session) and
the cleanness predicate cleaneCK-PFS-PSK, the adversary can only win by not issuing a CorruptASK(j) query before
the test session completes. We can now (cleverly) embed DH challenge values from the sym-ms-PRFODH challenger
into the long-term asymmetric keys of the party Pj without needing to address the adversary’s ability to issue a
CorruptASK(j) query.

We then replace the values C3, κ3 with uniformly random and independent values C̃3, κ̃3, and argue that any
adversary capable of distinguishing this change would be able to break the sym-ms-PRFODH assumption. In the
next game we replace the values C4, κ4 with uniformly random and independent values C̃4, κ̃4, and argue that any
adversary capable of distinguishing this change would be able to break the prf security of HKDF.

In a similar fashion, we use a chain of prf challengers to replace C6, C7, C8 and finally C9, tmp, κ9 with uniformly
random and independent values C̃6, C̃7, C̃8 and C̃9, t̃mp, κ̃9. We argue that any adversary A capable of distinguishing
these changes can be turned into a successful distinguishing adversary against the prf security of HKDF.

In the final game hop, we use the fact that κ̃9 is a uniformly random and independent value to embed κ̃9 within
an aead challenger, and add an abort rule abortdec that triggers when the test session πsi decrypts a zero ciphertext
received in the ResponderHello message. To do so, we use the aead decryption oracle to replace concrete decryptions
performed in the test session. Logically then, since the κ̃9 value is internal to the aead challenger, if zero decrypts
correctly, then A has managed to produce a ciphertext AEAD.Enc(κ̃9, 0, ∅, H9) that has not been the result of an
encryption oracle query on (∅, H9), and we can use zero, to break the aead security of the AEAD scheme. We
note that since κ̃9 is already a uniformly random and independent value, that this change is sound, and that the
probability of abortdec triggering is bound by the probability of adversary breaking the aead security of AEAD.

Since a session with role πsi .ρ = init will only accept if it recieves a ciphertext zero that decrypts correctly, and
abortdec triggers if such a ciphertext decrypts correctly, then the probability of πsi reaching an accept state is 0 in
the final game, and the adversary cannot force a session πsi to accept without an honest partner πtj . We show this
using the following sequence of games:

Game 0 This is a standard eCK-PFS-PSK game. Thus we have

AdveCK-PFS-PSK,C1
mWG,nP ,nS ,A (λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s) of the session πsi , and abort if during the execution of the experiment,
a query Test(i∗, s∗) is received and (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · Pr(break1)

Game 2 In this game, we guess the party of the intended partner of the test session πsi , and abort if πsi .pid 6= j.
Thus

Pr(break1) ≤ nP · Pr(break2).
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Game 3 In this game, we abort if the session πsi sets the status πsi .α ← reject. Note that by Game 2 we abort
if the Test query is ever issued to a session that is not πsi . If the session πsi ever reaches the status πsi .α ← reject,
then the Test(i, s) query will be rejected by the challenger as specified in Figure 2. Note that the difference between
the adversary’s advantage in Game 2 and Game 3 is 0: The sampling of the test bit b by the challenger only affects
the response to the Test(i, s) query, which is always rejected if πsi .α = reject. Thus

Pr(break2) = Pr(break3).

Game 4 In this game we define an abort event abortaccept that triggers if the status of the test session πsi ← accept.
It is clear then that

Pr(break3) = Pr(abortaccept) + 1/2.

In the following sequence of games, we show that the probability of the abort event triggering (i.e. Pr(abortaccept))
is negligibly close to zero.

Game 5 In this game, we replace the computation of the C3, κ3 values with uniformly random and independent
values C̃3, κ̃3. We do so by interacting with a sym-ms-PRFODH challenger in the following way:

Note that by Game 1, we know at the beginning of the experiment the index of session πsi such that Test(i, s) is
issued by the adversary. Similarly, by Game 2, we know at the beginning of the experiment the index of the intended
partner Pj of the session πsi . Thus, we initialise a sym-ms-PRFODH challenger, and embed the DH challenge keyshare
gu into the long-term public-key of party Pj and give gu to the adversary with all other (honestly generated) public
keys. Note that by Game 4 and the definition of this case, A is not able to issue a CorruptASK(j) query, as we abort
if πsi .α← reject and abort if πsi .α← accept, and thus will not need to reveal the private key u of the challenge DH
keyshare to A. However, we must account for all sessions t such that πtj must use the private key for computations.
In WireGuard, the long-term private keys are used to compute the following:

– In sessions where Pj acts as the initiator: C4, κ4 ← HKDF(C3, g
uv), C8 ← HKDF(C6, g

uy)
– In sessions where Pj acts as the responder: C3, κ3 ← HKDF(C2, g

xu), C4, κ4 ← HKDF(C3, g
uv)

Dealing with the challenger’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key (be it v, x or y) is a value that has been generated by another honest
session. The challenger can then use its own internal knowledge of v, x or y to complete the computations.

– The other Diffie-Hellman private key is a value that is unknown to the challenger, as it has been generated
instead by the adversary

In the second case, the challenger must instead use the ODHu oracle provided by the sym-ms-PRFODH chal-
lenger, specifically querying ODHu(Ck, X), (where X is the Diffie-Hellman public keyshare such that the private
key is unknown to the challenger) which will output HKDF(Ck, Xu) using the sym-ms-PRFODH challenger’s internal
knowledge of u. In a similar fashion we embed the other DH challenge value gv into the ephemeral public-key gx
of the test session πsi . Since the key will only be used in this session, the private key v (for consistency with the
WireGuard protocol notation introduced in Figure 4, we will refer to the private key as x) will be used in the two
following ways:

– C3, κ3 ← HKDF(C2, g
xv)

– C7 ← HKDF(C6, g
xy)

Taking the second case first, we compute C7 by querying the ODHv(C6, g
y) oracle provided by the sym-ms-PRFODH

challenger, which will compute HKDF(C6, g
xy) concretely, and can continue without further disruption. In the first

case, we query the sym-ms-PRFODH with the challenge salt value C2, and will return C̃3, κ̃3. If the test bit sampled
by the sym-ms-PRFODH challenger is 0, then C̃3, κ̃3 ← HKDF(C2, g

xv) and we are in Game 4. If the test bit sampled
by the sym-ms-PRFODH challenger is 1, then C̃3, κ̃3

$← {0, 1}|HKDF| and we are in Game 5. Thus any adversary
A capable of distinguishing this change can be turned into a successful adversary against the sym-ms-PRFODH
assumption, and we find:

Pr(abortaccept) ≤ Advsym-ms-PRFODH
G,q,HKDF,A (λ) + Pr(break4).
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Game 6 In this game we replace the values C4, κ4 with uniformly random and independent values C̃4, κ̃4
$←

{0, 1}HKDF (where {0, 1}HKDF is the output space of the HKDF) used in the protocol execution of the test session.
Specifically, we initialise a prf challenger and query ((gu)v), and use the output C̃4, κ̃4 from the prf challenger
to replace the computation of C4, κ4. Since by Game 5, C̃3 is a uniformly random and independent value, this
replacement is sound. If the test bit sampled by the prf challenger is 0, then C̃4, κ̃4 ← HKDF(C3, g

uv) and we are
in Game 5. If the test bit sampled by the prf challenger is 1, then C̃4, κ̃4

$← {0, 1}|HKDF| and we are in Game 6.
Thus any adversary A capable of distinguishing this change can be turned into a successful adversary against the
prf security of HKDF, and we find:

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5)

Game 7 In this game we replace the value C6 with a uniformly random and independent value C̃6
$← {0, 1}|HKDF|

(where {0, 1}|HKDF| is the output space of HKDF) used in the protocol execution of the test session. Specifically, we
initialise a prf challenger, query it with (gy), and use the output C̃6 from the prf challenger to replace the computation
of C6. Since by Game 6, C̃4 is a uniformly random and independent value, this replacement is sound. If the test bit
sampled by the prf challenger is 0, then C̃6 ← prf(C4, g

y) and we are in Game 6. If the test bit sampled by the prf
challenger is 1, then C̃6

$← {0, 1}|HKDF| and we are in Game 7. Thus any adversary A capable of distinguishing this
change can be turned into a successful adversary against the prf security of HKDF, and we find:

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Game 8 As in previous games, we replace the computation of C7 with a uniformly random value C̃7 from the same
distribution, in the challenger’s execution of the test session πsi . We do so by interacting with a prf challenger in
the following way: When it is time to compute C7 ← HKDF(C̃6, g

xy) we instead initialise a prf challenger and query
it with gxy. We note that by Game 7 that C̃6 is a uniformly random value and independent value, and thus this
replacement is sound.If the random bit b sampled by the prf challenger is 0, then C̃7 ← HKDF(C̃6, g

xy) and we are
in Game 7. If the random bit b sampled by the prf challenger is 1, then C̃7

$← {0, 1}|HKDF| and we are in Game 8
. Any adversary A capable of distinguishing this change in the experiment can be turned into an algorithm against
the prf security of HKDF, and thus

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7).

Game 9 As in previous games, we replace the computation of C8 with a uniformly random value C̃8 from the same
distribution, in the challenger’s execution of the test session πsi . We do so by interacting with a prf challenger in
the following way: When it is time to compute C8 ← HKDF(C̃7, g

uy) we instead initialise a prf challenger and query
it with guy. We note that by Game 8 that C̃7 is a uniformly random value and independent value, and thus this
replacement is sound.If the random bit b sampled by the prf challenger is 0, then C8 ← HKDF(C̃7, g

uy) and we are
in Game 8. If the random bit b sampled by the prf challenger is 1, then C̃8

$← {0, 1}|HKDF| and we are in Game 9.
Any adversary A capable of distinguishing this change in the experiment can be turned into an algorithm against
the prf security of HKDF, and thus

Pr(break7) ≤ Advprf
HKDF,A(λ) + Pr(break8).

Game 10 As in previous games, we replace the computation of C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9
from the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by
interacting with a HKDF challenger in the following way: When it is time to compute C9, tmp, κ9 ← HKDF(C̃8, psk)
we instead initialise a prf challenger and query it with psk. We note that by Game 9 that C̃8 is a uniformly random
value and independent value, and thus this replacement is sound.If the random bit b sampled by the prf challenger
is 0, then we are in Game 9. If the random bit b sampled by the prf challenger is 1, then we are in Game 10. Any
adversary A capable of distinguishing this change in the experiment can be turned into an algorithm against the prf
security of HKDF, and thus

Pr(break8) ≤ Advprf
HKDF,A(λ) + Pr(break9).
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Game 11 In this game, the test session πsi will only set πsi .α← accept if the adversary is able to produce a value
zero = AEAD(κ̃9, 0, H9, ∅) that decrypts correctly. In this game, we now initalise an aead challenger to decrypt
RespHello.zero ciphertexts in the test session πsi . By Game 10 that κ̃9 is a uniformly random and independent
value, and thus this change is undetectable. Since the κ̃9 is internal to the aead challenger, then it follows that the
adversary capable of forging such a zero ciphertext breaks the security of the AEAD scheme. We find that

Pr(break9) = Advauth-aead
AEAD,A (λ).

Thus

Pr(abortaccept) ≤
(
Advsym-ms-PRFODH

G,q,HKDF,A (λ) + 4 · Advprf
HKDF,A(λ) + Advauth-aead

AEAD,A (λ)
)

It follows then

AdveCK-PFS-PSK,C1
mWG,nP ,nS ,A (λ) ≤ n2

PnS

(
Advsym-ms-PRFODH

G,q,HKDF,A (λ) + 4 · Advprf
HKDF,A(λ) + Advaead

AEAD,A(λ)
)
.

Case 2: Test resp session without contributive keyshare partner In this case we bound the probability
that a session πsi such that πsi .ρ = resp will accept when there exists no contributive keyshare partner. Recall that
an contributive keyshare partner exists for a session πsi when for some session πtj , πtj .kid is a substring of πsi .mr.
Informally, the test session πsi has not received the keyshares that were honestly generated by another session, having
either been modified or injected wholesale by the adversary.

Proof sketch We begin by guessing the index of the test session, and adding an abort event that occurs if a Test
query is directed to a session that does not have the index of the guessed session, and similarly, guess the party
index of the intended partner session. Afterwards, we add another abort event that occurs if the guessed test session
πsi reaches the reject status. Since we alrady abort if the guessed session is not the session indicated by the Test
query, and if the session πsi has reached the reject status, the Test(i, s) query will always respond with ⊥, there is no
difference in the adversary’s advantage in the two games - any further queries that the adversary makes is responded
to identically regardless of the sampling of the random test bit b.

We define an abort event abortaccept that will occur if πsi ← accept. The following games then are designed to
bound the probability of abortaccept occuring to be negligibly close to zero. Note that from this game onwards, the
adversary is unable to make a CorruptASK(j) query, since we now abort the game when the session πsi reaches a
status that is not active, and by the Case 1 definition (a test session without a contributive keyshare session) and
the cleanness predicate cleaneCK-PFS-PSK, the adversary can only win by not issuing a CorruptASK(j) query before
the test session completes. We can now (cleverly) embed DH challenge values from the sym-ms-PRFODH challenger
into the long-term asymmetric keys of the party Pj without needing to address the adversary’s ability to issue a
CorruptASK(j) query.

We then replace the value C8 with a uniformly random and independent value C̃8, and argue that any adversary
capable of distinguishing this change would be able to break the sym-ms-PRFODH assumption. In the next game
we replace the values C9, tmp, κ4 with uniformly random and independent values C̃9, t̃mp, κ̃4, and argue that any
adversary capable of distinguishing this change would be able to break the PRF assumption. In a similar fashion,
we replace the values C10, κ10 with uniformly random and independent values C̃10, κ̃10 and again argue that any
distinguishing adversary can be turned into an adversary against the PRF assumption. Finally, we argue that the
test session πsi will only reach an accept state (and trigger the abortaccept event) if it receives a value conf =
AEAD.Enc(κ̃10, 0, ∅, H10). We use the fact that κ̃10 is a uniformly random and independent value to embed κ̃10
within an aead-auth challenger, and add an abort rule abortdec that triggers if the conf ciphertext received in
the SenderConf message would decrypt without error. Logically then, since the κ̃10 value is internal to the aead
challenger, if conf would decrypt correctly, then A has managed to produce a ciphertext AEAD.Enc(κ̃10, 0, ∅, H10)
that has not been the result of an encryption oracle query on (0, ∅, H10), and we can use zero to break the aead-auth
security of the AEAD scheme. We note that since κ̃10 is already a uniformly random and independent value, that this
change is sound, and that the probability of abortdec triggering is bound by the probability of adversary breaking
the aead-auth security of AEAD.

Since a session with role πsi .ρ = resp will only accept if it recieves a ciphertext conf that decrypts correctly, and
abortdec triggers if such a ciphertext decrypts correctly, then the probability of πsi reaching an accept state is 0 in
the final game, and the adversary cannot force a session πsi to accept without a contributive keyshare partner πtj .
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Game 0 This is a standard eCK-PFS-PSK game. Thus we have:

AdveCK-PFS-PSK,C2
mWG,nP ,nS ,A (λ) = Pr(break0)

Game 1 In this game, we guess the index (i, s) of the session πsi , and abort if during the execution of the experiment,
a query Test(i∗, s∗) is received and (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · Pr(break1)

Game 2 In this game, we guess the party of the intended partner of the test session πsi , and abort if πsi .pid 6= j.
Thus:

Pr(break1) ≤ nP · Pr(break2)

Game 3 In this game, we abort if the session πsi sets the status πsi .α ← reject. Note that by Game 1 we abort
if the Test query is ever issued to a session that is not πsi . If the session πsi ever reaches the status πsi .α ← reject,
then the Test(i, s) query will be rejected by the challenger as specified in Figure 2. Note that the difference between
the adversary’s advantage in Game 2 and Game 3 is 0 as the sampling of the test bit b by the challenger only
affects the response to the Test(i, s) query, which is always rejected if πsi .α = reject. Thus:

Pr(break2) = Pr(break3)

Game 4 In this game we define an abort event abortaccept that triggers if the status of the test session πsi ← accept.
It is clear then that

Pr(break3) ≤ Pr(abortaccept) + Pr(break4)
and additionally that Pr(break4) = 1/2, since all responses to the adversary are identical regardless of the sampling
of the test bit b. In the following sequence of games, we show that the probability of the abort event triggering (i.e.
Pr(abortaccept)) is negligibly close to zero.

Game 5 In this game, we replace the computation of the C8 value with a uniformly random and independent value
C̃8. We do so by interacting with a sym-ms-PRFODH challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πsi such that Test(i, s) is
issued by the adversary. Similarly, by Game 3, we know at the beginning of the experiment the index of the intended
partner Pj of the session πsi . Thus, we intialise a sym-ms-PRFODH challenger, and embed the DH challenge keyshare
gu into the long-term public-key of party Pj and give gu to the adversary with all other (honestly generated) public
keys. Note that by Game 4 and the definition of this case, A is not able to issue a CorruptASK(j) query, as we abort
if πsi .α← reject and abort if πsi .α← accept, and thus will not need to reveal the private key u of the challenge DH
keyshare to A. However, we must account for all sessions t such that πtj must use the private key for copmutations.
In WireGuard, the long-term private keys are used in the following computations:
– In sessions where Pj acts as the initiator: C4, κ4 ← HKDF(C3, g

uv), C8 ← HKDF(C6, g
uy)

– In sessions where Pj acts as the responder: C3, κ3 ← HKDF(C2, g
xu), C4, κ4 ← HKDF(C3, g

uv)

Dealing with the challenger’s computation of these values will be done in two ways:
– The other Diffie-Hellman private key (be it v, x or y) is a value that has been generated by another honest

session. The challenger can then use its own internal knowledge of v, x or y to complete the computations.
– The other Diffie-Hellman private key is a value that is unknown to the challenger, as it has been generated

instead by the adversary

In these cases, the challenger must instead use the ODHu oracle provided by the sym-ms-PRFODH challenger,
specifically querying ODHu(Ck, X), (where X is the Diffie-Hellman public keyshare such that the private key is un-
known to the challenger) which will output HKDF(Ck, Xu) using the sym-ms-PRFODH challenger’s internal knowledge
of u.

In a similar fashion we embed the other DH challenge value gv into the ephemeral public-key gy of the test session
πsi . Since the key will only be used in this session, the private key v (for consistency with the WireGuard protocol
notation introduced in Figure 4, we will refer to the private key as y) will be used in the two following ways:
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– C7 ← HKDF(C6, g
xy)

– C8 ← HKDF(C7, g
uy)

Taking the first case first, we compute C7 by querying the ODHv(C6, g
x) oracle provided by the sym-ms-PRFODH

challenger, which will compute HKDF(C6, g
xy) concretely, and can continue without further disruption. In the second

case, we query the sym-ms-PRFODH with the challenge salt value C7, and will return C̃8. If the test bit sampled by
the sym-ms-PRFODH challenger is 0, then C̃8 ← HKDF(C7, g

uy) and we are in Game 4. If the test bit sampled by
the sym-ms-PRFODH challenger is 1, then C̃8

$← {0, 1}|HKDF| and we are in Game 5. Thus any adversary A capable
of distinguishing this change can be turned into a successful adversary against the sym-ms-PRFODH assumption,
and we find:

Pr(abortaccept) ≤ Advsym-ms-PRFODH
G,q,HKDF,A (λ) + Pr(break5)

Game 6 In this game we replace the values C9, tmp, κ9 with uniformly random and independent values C̃9, t̃mp, κ̃9
$←

{0, 1}|HKDF| (where {0, 1}|HKDF| is the output space of HKDF) used in the protocol execution of the test session.
Specifically, we initialise a PRF challenger and issue the challenge psk to it, and use the output C̃9, t̃mp, κ̃9 from
the PRF challenger to replace the computation of C9, tmp, κ9. Since by Game 5, C̃8 is a uniformly random and
independent value, this replacement is sound. If the test bit sampled by the prf challenger is 0, then C̃9, t̃mp, κ̃4 ←
HKDF(C8, psk) and we are in Game 5. If the test bit sampled by the prf challenger is 1, then C̃9, tmp, κ̃9

$←
{0, 1}|HKDF| and we are in Game 6. Thus any adversary A capable of distinguishing this change can be turned into
a successful adversary against the PRF assumption, and we find:

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Game 7 In this game we replace the values C10, κ10 ← HKDF(C̃9, ∅) with uniformly random and independent
values C̃10, κ̃10

$← {0, 1}|HKDF| (where {0, 1}|HKDF| is the output space of the HKDF) used in the protocol execution
of the test session. Specifically, we initialise a PRF challenger and issue the challenge query ∅ to it, and use the
output C̃10, κ̃10 from the prf challenger to replace the computation of C10, κ10. Since by Game 6, C̃9 is a uniformly
random and independent value, this replacement is sound. If the test bit sampled by the PRF challenger is 0,
then C̃10, κ̃10 ← HKDF(C̃9, ∅) and we are in Game 6. If the test bit sampled by the prf challenger is 1, then
C̃10, κ̃10

$← {0, 1}|HKDF| and we are in Game 7. Thus any adversary A capable of distinguishing this change can be
turned into a successful adversary against the prf assumption, and we find:

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7)

Game 8 In this game, we add an abort event abortdecrypt that triggers if the test session πsi receives a ciphertext
conf in the SenderConf message that decrypts correctly. Since the test session πsi will only reach an accept status
if conf decrypts correctly, it follows that

Pr(break7) ≤ Pr(abortdecrypt).

Now we show that the probability of abortdecrypt is negligibly close to zero. We do so by initialising an aead-auth
challenger to decrypt SenderConf.conf ciphertexts in the test session πsi . We note that by Game 7 that κ̃9 is a
uniformly random and independent value, and since the aead challenger samples the internal aead key from the
same distribution thus this change is undetectable. If πsi receives a ciphertext conf in the SenderConf message that
decrypts correctly and the aead encryption oracle has not been queried, then it follows that this ciphertext conf is
a forged ciphertext, breaking the auth security of the AEAD scheme. Thus, we find that:

Pr(abortdecrypt) ≤ Advauth-aead
AEAD,A (λ).

Thus we find that the probability of A in causing a session πsi with ρ = resp to reach πsi .α← accept and triggering
breakaccept to be:

Pr(abortaccept) ≤
(
Advsym-ms-PRFODH

G,q,HKDF,A (λ) + Advprf
HKDF,A(λ) + Advprf

HKDF,A(λ) + Advauth-aead
AEAD,A (λ)

)
.
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We can finally show that

AdveCK-PFS-PSK,C2
mWG,nP ,nS ,A (λ) ≤ n2

PnS

(
Advsym-ms-PRFODH

G,q,HKDF,A (λ) + 2 · Advprf
HKDF,A(λ) + Advauth-aead

AEAD,A (λ)
)
.

Case 3: Test session with contributive keyshare partner By the case definition and the definition of the
cleanness predicate cleaneCK-PFS-PSK there are five ways that the cleanness predicate could potentially be upheld3: A
has issued Test(i, s) where cleaneCK-PFS-PSK(πsi ) is upheld and has a contributive keyshare session πtj and either:

1. A preshared key exists between party Pi and the test session’s intended partner, and A did not issue CorruptPSK(i, j),
or CorruptPSK(j, i). We denote with AdveCK-PFS-PSK,C3.1

mWG,nP ,nS ,A (λ) the advantage of A in winning in this case and refer
to this as the preshared subcase.

2. A did not issue CorruptEPK(i, s) or CorruptEPK(j, t). We denote with AdveCK-PFS-PSK,C3.2
mWG,nP ,nS ,A (λ) the advantage A

and refer to this as the ephemerals subcase.
3. A did not issue CorruptEPK(i, s) or CorruptASK(j). We denote with AdveCK-PFS-PSK,C3.3

mWG,nP ,nS ,A (λ) the advantage of A
and refer to this as the ephemeral/long-term subcase.

4. A did not issue CorruptASK(i) or CorruptEPK(j, t). We denote with AdveCK-PFS-PSK,C3.4
mWG,nP ,nS ,A (λ) the advantage of A

and refer to this as the long-term/ephemeral subcase.
5. A did not issue CorruptASK(i) or CorruptASK(j). We denote with AdveCK-PFS-PSK,C3.5

mWG,nP ,nS ,A (λ) the advantage of A and
refer to this as the long-terms subcase.

Since at least one of these subcases must apply, then:

AdveCK-PFS-PSK,C3
mWG,nP ,nS ,A (λ) = max

{
AdveCK-PFS-PSK,C3.1

mWG,nP ,nS ,A (λ),AdveCK-PFS-PSK,C3.2
mWG,nP ,nS ,A (λ),AdveCK-PFS-PSK,C3.3

mWG,nP ,nS ,A (λ),

AdveCK-PFS-PSK,C3.4
mWG,nP ,nS ,A (λ),AdveCK-PFS-PSK,C3.5

mWG,nP ,nS ,A (λ)
}

We now turn to bounding the advantage of the adversary A in each of the subcases, and show that if the advantage
of A in each subcase is negligible, then so too is the advantage of A in Case 3.

Case 3.1: The Preshared Subcase In this subcase we assume that the cleanness predicate is upheld such that
a preshared secret between the test session and its honest contributive keyshare session exists, and has not been
corrupted. Due to the definition of Case 3, we know that such an honest contributive keyshare session exists. In what
follows, we show that the probability of A in winning the key-indistinguishability game is negligible.

Proof sketch We begin by guessing the index of the test session, and add an abort event that occurs if a Test query
is directed to a session that does not have the index of the guessed session, and similarly, guess the index of the
contributive keyshare partner. We then replace the value of C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9, and
note that by the subcase definition and the cleaneCK-PFS-PSK, that the adversary cannot issue either a CorruptPSK(i, j)
or CorruptPSK(j, i) query. Since the psk shared between the two parties is a uniformly random and independent value,
we argue that any adversary capable of distinguishing this replacement would be able to break the PRF assumption.
In a similar fashion, we replace the values C10, κ10 with uniformly random and independent values C̃10, κ̃10, and
argue that since C̃9 was already independent from the protocol execution that this replacement was sound and that
any adversary capable of distinguishing this change would be able to be turned into a adversary against PRF security.
In the final game and with a similar argument, we replace tki, tkr with uniformly random and independent values,
based on the PRF security of HKDF. Since the session keys are now uniformly random and independent of the test
bit b sampled by the challenger, the advantage of A against the eCK-PFS-PSK-security of the modified WireGuard
protocol in the preshared key subcase is negligible.

Game 0 This is a standard eCK-PFS-PSK with cleanness predicate cleaneCK-PFS-PSK upheld as in Definition 7. Thus

AdveCK-PFS-PSK,C3.1
mWG,nP ,nS ,A (λ) = Pr(break0).

3 Note that we do not make explicit in each condition that A has not issued either a Reveal(i, s) or Reveal(j, t) query
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Game 1 In this game, we guess the index (i, s) of the Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus

Pr(break0) ≤ nPnS · Pr(break1).

Game 2 In this game, we guess the index (j, t) of the contributive keyshare session πtj (which exists by the Case
3 definition) and abort if during the experiment, a query Test(i, s) is issued when the contributive keyshare session
πj
∗

t∗ exists such that (j∗, t∗) 6= (j, t). Thus

Pr(break1) ≤ nPnS · Pr(break2).

Game 3 In this game, we replace the computation of C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9 in the
execution of session πsi and its partner session πtj . We do so by interacting with a prf challenger in the following way:
When it is time to compute C9, tmp, κ9 ← HKDF(C8, psk) we instead initialise a prf challenger and query C8. We
note that by the cleanness predicate and the preconditions of this subcase that psk is a uniformly random value that
will not be revealed by A through a CorruptPSK(i, j) query, and thus this replacement is sound. If the random bit
b sampled by the prf challenger is 0, then we are in Game 2. If the random bit b sampled by the prf challenger is
1, then we are in Game 3. Any adversary A capable of distinguishing this change in the experiment can be turned
into an algorithm against the prf security of HKDF and thus

Pr(break2) ≤ Advprf
HKDF,A(λ) + Pr(break3).

Game 4 Similarly to the previous game, we replace the computation of C10 with a uniformly random value C̃10
from the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so
by interacting with a prf challenger in the following way: When it is time to compute C10 ← HKDF(C9, ∅) we instead
initialise a prf challenger and query it with the empty string ∅. We note that by Game 3 that C9 is a uniformly
random value independent from the protocol execution, and as such the replacement is sound.If the random bit b
sampled by the prf challenger is 0, then we are in Game 3. If the random bit b sampled by the prf challenger is 1,
then we are in Game 4. Any adversary A capable of distinguishing this change in the experiment can be turned
into an algorithm against the prf security of HKDF, and thus

Pr(break3) ≤ Advprf
prf,A(λ) + Pr(break4).

Game 5 As in previous games, we replace the values tki, tkr ← HKDF(C̃10, ∅) computed by the challenger in the
execution of the test session and its honest contributive keyshare session partner πtj with uniformly random values
t̃ki, t̃kr. We do so by interacting with a prf challenger in the following way: When it is time to compute tki, tkr in
the appropriate sessions, we instead initialise a prf challenger and query it with the empty string ∅. We note that by
Game 4 that C̃10 is a uniformly random value independent from the protocol execution, and as such the replacement
is sound.If the random bit sampled by the prf challenger if 0, then we are in Game 4, but otherwise the output of
the prf challenger t̃ki, t̃kr is uniformly random and independent and we are in Game 5. Any adversary A capable
of distinguishing this change in the experiment can be turned into an algorithm against the prf security of HKDF,
and thus

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5).

Since the response to the Test(i, s) query is (in Game 5) uniformly random and independent regardless of the value
of the test bit b, then the adversary’s success in winning the key-indistinguishability game is reduced to simply
guessing and thus:

AdveCK-PFS-PSK,C3.1
mWG,nP ,nS ,A (λ) ≤ n2

Pn
2
S

(
3 · Advprf

HKDF,A(λ)
)
.
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Case 3.2: The Ephemerals Subcase In this subcase we know that (by the definition of cleaneCK-PFS-PSK and
the subcase preconditions) that the session πsi such that the Test(i, s) session will be queried has an honest con-
tributive keyshare session πtj and that CorruptEPK(i, s) and CorruptEPK(j, t) queries have not been issued during
the execution of the experiment. We now show that in this subcase, the adversary’s probability in winning the
key-indistinguishability game is negligible.

Game 0 This is a standard eCK-PFS-PSK game with cleanness predicate cleaneCK-PFS-PSK upheld. Thus we have

AdveCK-PFS-PSK
mWG,nP ,nS ,A(λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s) of the Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus

Pr(break0) ≤ nPnS · Pr(break1).

Game 2 In this game, we guess the index (j, t) of the honest partner session πtj (which we know exists by the Case
3 definition) and abort if, during the experiment, a query Test(i, s) is issued if the contributive keyshare session πj

∗

t∗

exists such that (j∗, t∗) 6= (i, s). Thus

Pr(break1) ≤ nPnS · Pr(break2).

Game 3 In this game, we replace the value gxy computed in the test session πsi and its honest contributive keyshare
session partner with a random element from the same group. Note that since the initiator session and the responder
session both get key confirmation messages that include derivations based on the Diffie-Hellman keyshares, and thus
know that the ephemeral keyshare values were recieved by the other session without modification. We explicitly
interact with a ddh challenger, and replace the ephemeral epki and epkr values sent in the InitiatorHello and
ResponderHello messages with the challenge DH keyshares from the ddh challenger. We require the private keys of
the DH values in three computations in the initiator and responder sessions:

– C3, κ3 ← HKDF(C2, g
vx)

– C7 ← HKDF(C6, g
xy)

– C8 ← HKDF(C7, g
uy)

In the first and third cases, the challenger uses its internal knowledge of the long-term keys of the parties
to simulate knowledge of the ephemeral private keys, computing instead C3, κ3 ← HKDF(C2, (gx)v) and C8 ←
HKDF(C7, (gy)u). In the second case, we replace the gxy value with the output gz value from the ddh challenger.
When the test bit sampled by the ddh challenger is 0, then z = xy and we are in Game 2. When the test bit sampled
by the ddh challenger is 1, then z $← Zq and we are in Game 3. Any adversary that can detect this change can be
turned into an adversary against the ddh problem and thus

Pr(break2) ≤ Advddh
G,q,A(λ) + Pr(break3).

Game 4 In this game, we replace the computation of C7 with a uniformly random value C̃7 from the same
distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by interacting
with a HKDF challenger in the following way: When it is time to compute C7 ← HKDF(C6, g

z) we instead initialise
a HKDF challenger and query it with C6. We note that by Game 3 that gz is a uniformly random value and
independent value, and thus this replacement is sound. If the random bit b sampled by the prf challenger is 0,
then C̃7 ← HKDF(C6, g

z) and we are in Game 3. If the random bit b sampled by the prf challenger is 1, then
C̃7

$← {0, 1}|HKDF| and we are in Game 4. Any adversary A capable of distinguishing this change in the experiment
can be turned into an algorithm against the prf security of HKDF and thus

Pr(break3) ≤ Advprf
HKDF,A(λ) + Pr(break4).
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Game 5 Similarly to the previous game, we replace the computation of C8 with a uniformly random value C̃8 from
the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by
interacting with a prf challenger in the following way: When it is time to compute C8 ← HKDF(C̃7, g

uy) we instead
initialise a prf challenger and query it with guy. We note that by Game 4 that C̃7 is a uniformly random value
and independent value, and thus this replacement is sound. If the random bit b sampled by the prf challenger is
0, then C8 ← PRF(C̃7, g

uy) and we are in Game 4. If the random bit b sampled by the prf challenger is 1, then
C̃8

$← {0, 1}|PRF| and we are in Game 5. Any adversary A capable of distinguishing this change in the experiment
can be turned into an algorithm against the prf security of HKDF, and thus

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5).

Game 6 As in previous games, we replace the computation of C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9
from the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so
by interacting with a prf challenger in the following way: When it is time to compute C9, tmp, κ9 ← HKDF(C̃8, psk)
we instead initialise a prf challenger and query it with psk. We note that by Game 5 that C̃8 is a uniformly random
value and independent value, and thus this replacement is sound. If the random bit b sampled by the prf challenger
is 0, then we are in Game 5. If the random bit b sampled by the prf challenger is 1, then we are in Game 6. Any
adversary A capable of distinguishing this change in the experiment can be turned into an algorithm against the prf
security of HKDF, and thus

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6).

Game 7 As in previous games, we replace the computation of C10 with a uniformly random value C̃10 from the same
distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to compute C10 ← HKDF(C9, ∅) we instead initialise a
prf challenger and query it with the empty string ∅. We note that by Game 6 that C̃9 is a uniformly random value
independent from the protocol execution, and as such the replacement is sound. If the random bit b sampled by the
prf challenger is 0, then we are in Game 6. If the random bit b sampled by the prf challenger is 1, then we are in
Game 7. Any adversary A capable of distinguishing this change in the experiment can be turned into an algorithm
against the prf security of HKDF, and thus

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7)

Game 8 As in previous games, we replace the values tki, tkr ← HKDF(C̃10, ∅) computed by the challenger in the
execution of the test session and its honest contributive keyshare session partner πtj with uniformly random values
t̃ki, t̃kr. We do so by interacting with a prf challenger in the following way: When it is time to compute tki, tkr in
the appropriate sessions, we instead initialise a prf challenger and query it with the empty string ∅. We note that by
Game 4 that C̃10 is a uniformly random value independent from the protocol execution, and as such the replacement
is sound. If the random bit sampled by the prf challenger if 0, then we are in Game 7, but otherwise the output of
the prf challenger t̃ki, t̃kr is uniformly random and independent and we are in Game 8. Any adversary A capable
of distinguishing this change in the experiment can be turned into an algorithm against the prf security of HKDF,
and thus

Pr(break7) ≤ Advprf
HKDF,A(λ) + Pr(break8)

Since the response to the Test(i, s) query issued by the adversary is, in Game 8, uniformly random and independent
of the test bit b sampled by the challenger, then the adversary’s success in winning the key-indistinguishability game
is reduced to simply guessing and thus:

AdveCK-PFS-PSK,C3.2
mWG,nP ,nS ,A (λ) ≤ n2

Pn
2
S

(
Advddh

G,q,A(λ) + 5 · Advprf
HKDF,A(λ)

)
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Case 3.3: The Ephemeral/Long-term Subcase In this subcase we know that (by the definition of cleaneCK-PFS-PSK
and the subcase preconditions) that the session πsi such that the Test(i, s) session will be queried has an honest con-
tributive keyshare session πtj and that CorruptEPK(i, s) and CorruptASK(j) queries have not been issued during the
execution of the experiment. Note that in our proof we set that the test session has role init and the partner
session has role resp, but the case where the test session has role resp and the partner session has role init
follows analogously. In what follows, we show that in this subcase, the adversary’s probability in winning the key-
indistinguishability game is negligible under certain security assumptions.

Game 0 This is a standard eCK-PFS-PSK game with cleanness predicate cleaneCK-PFS-PSK upheld. Thus we have:

AdveCK-PFS-PSK
mWG,nP ,nS ,A(λ) = Pr(break0)

Game 1 In this game, we guess the index (i, s) of the Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · (Pr(break1))

Game 2 In this game, we guess the index (j, t) of the honest partner session πtj (which we know exists by the Case
3 definition) and abort if, during the experiment, a query Test(i, s) is issued if the contributive keyshare session πj

∗

t∗

exists such that (j∗, t∗) 6= (i, s). Thus:

Pr(break1) ≤ nPnS · (Pr(break2))

Game 3 In this game, we replace the computation of the C3, κ3 values with uniformly random and independent
values C̃3, κ̃3. We do so by interacting with a sym-ms-PRFODH challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πsi such that Test(i, s) is
issued by the adversary. Similarly, by Game 3, we know at the beginning of the experiment the index of the intended
partner Pj of the session πsi . Thus, we intialise a sym-ms-PRFODH challenger, and embed the DH challenge keyshare
gv into the long-term public-key of party Pj and give gv to the adversary with all other (honestly generated) public
keys. Note that by the definition of this case, A is not able to issue a CorruptASK(j) query, and thus will not need
to reveal the private key v of the challenge DH keyshare to A. However, we must account for all sessions t such
that Pj must use the private key for computations. In WireGuard, the long-term private keys are always used in the
following ways (note that for consistency we use v to indicate the long-term private key of Pj independently of its
role):

– If the party Pj is acting as the responder:
• C3, κ3 ← HKDF(C2, g

x′v)
• C4, κ4 ← HKDF(C3, g

u′v)
– If the party Pj is acting as the initiator:
• C4, κ4 ← HKDF(C3, g

u′v)
• C8, κ8 ← HKDF(C7, g

y′v)

Dealing with the challenger’s computation of these values will be done in two ways:

– x′, u′, or y′ are values that has been generated by another honest session. The challenger can then use its own
internal knowledge of x′, u′, and y′ to compute C3, κ3, C4, κ4 and C8, κ8 respectively.

– x′, u′, or y′ are values that are unknown to the challenger, as they have been generated instead by the adversary.

In these cases, the challenger must instead use the ODHv oracle provided by the sym-ms-PRFODH challenger,
specifically querying ODHv(C2, g

x′), ODHv(C3, g
u′), or ODHv(C7, g

y′) which will output ODHv(C2, g
x′v), ODHv(C3, g

u′v),
or ODHv(C7, g

y′v) using the sym-ms-PRFODH challenger’s internal knowledge of v.
In a similar fashion we embed the other DH challenge value gx into the ephemeral public-key gx of the test

session πsi . Since the key will only be used in this session, the private key x will be used in the two following ways:
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– C3, κ3 ← HKDF(C2, g
xv)

– C7 ← HKDF(C6, g
xy)

Taking the second case first, we compute C7 by querying the ODHx(C6, g
y) oracle provided by the sym-ms-PRFODH

challenger, which will compute HKDF(C6, g
xy) concretely, and can continue without further disruption. In the first

case, we query the sym-ms-PRFODH with the challenge salt value C2, and will return C̃3, κ̃3. If the test bit sampled
by the sym-ms-PRFODH challenger is 0, then C̃3, κ̃3 ← HKDF(C2, g

xv) and we are in Game 2. If the test bit sampled
by the sym-ms-PRFODH challenger is 1, then C̃3, κ̃3

$← {0, 1}|HKDF| and we are in Game 3. Thus any adversary
A capable of distinguishing this change can be turned into a successful adversary against the sym-ms-PRFODH
assumption, and we find:

Pr(break2) ≤ Advsym-ms-PRFODH
G,q,HKDF,A (λ) + Pr(break3)

Game 4 In this game, we replace the computation of C4, κ4 with uniformly random values C̃4, κ̃4 from the same
distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to compute C4, κ4 ← HKDF(C̃3, g

uv) we instead initialise a
prf challenger and query it with guv. We note that by Game 3 that C̃3 is a uniformly random value and independent
value, and thus this replacement is sound. If the random bit b sampled by the prf challenger is 0, then we are in
Game 3. If the random bit b sampled by the prf challenger is 1, then we are in Game 4. Any adversary A capable
of distinguishing this change in the experiment can be turned into an algorithm against the prf security of HKDF
and thus:

Pr(break3) ≤ Advprf
HKDF,A(λ) + Pr(break4)

Game 5 In this game, we replace the computation of C6 with a uniformly random value C̃6 from the same
distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to compute C6 ← HKDF(C̃4, g

y) we instead initialise a
prf challenger and query it with gy. We note that by Game 4 that C̃4 is a uniformly random value and independent
value, and thus this replacement is sound. If the random bit b sampled by the prf challenger is 0, then we are in
Game 4. If the random bit b sampled by the prf challenger is 1, then we are in Game 5. Any adversary A capable
of distinguishing this change in the experiment can be turned into an algorithm against the prf security of HKDF
and thus:

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5)

Game 6 In this game, we replace the computation of C7 with a uniformly random value C̃7 from the same
distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to compute C7 ← HKDF(C̃6, g

xy) we instead initialise a
prf challenger and query it with gxy. We note that by Game 5 that C̃6 is a uniformly random value and independent
value, and thus this replacement is sound. If the random bit b sampled by the prf challenger is 0, then C̃7 ←
HKDF(C̃6, g

xy) and we are in Game 5. If the random bit b sampled by the prf challenger is 1, then C̃7
$← {0, 1}|HKDF|

and we are in Game 6. Any adversary A capable of distinguishing this change in the experiment can be turned into
an algorithm against the prf security of HKDF and thus:

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Game 7 Similarly to the previous game, we replace the computation of C8 with a uniformly random value C̃8 from
the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by
interacting with a prf challenger in the following way: When it is time to compute C8 ← HKDF(C̃7, g

uy) we instead
initialise a prf challenger and query it with guy. We note that by Game 6 that C̃7 is a uniformly random value
and independent value, and thus this replacement is sound. If the random bit b sampled by the prf challenger is 0,
then C8 ← HKDF(C̃7, g

uy) and we are in Game 6. If the random bit b sampled by the prf challenger is 1, then
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C̃8
$← {0, 1}|HKDF| and we are in Game 7. Any adversary A capable of distinguishing this change in the experiment

can be turned into an algorithm against the prf security of HKDF and thus:

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7)

Game 8 In this game, we replace the computation of C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9 from
the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by
interacting with a prf challenger in the following way: When it is time to compute C9, tmp, κ9 ← HKDF(C̃8, psk) we
instead initialise a prf challenger and query it with psk. We note that by Game 7 that C̃8 is a uniformly random
value and independent value, and thus this replacement is sound. If the random bit b sampled by the prf challenger
is 0, then we are in Game 7. If the random bit b sampled by the prf challenger is 1, then we are in Game 8. Any
adversary A capable of distinguishing this change in the experiment can be turned into an algorithm against the prf
security of HKDF and thus:

Pr(break7) ≤ Advprf
HKDF,A(λ) + Pr(break8)

Game 9 Similarly to the previous game, we replace the computation of C10 with a uniformly random value C̃10
from the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so
by interacting with a prf challenger in the following way: When it is time to compute C10 ← HKDF(C9, ∅) we instead
initialise a prf challenger and query it with the empty string ∅. We note that by Game 8 that C̃9 is a uniformly
random value independent from the protocol execution, and as such the replacement is sound If the random bit b
sampled by the prf challenger is 0, then we are in Game 8. If the random bit b sampled by the prf challenger is 1,
then we are in Game 9. Any adversary A capable of distinguishing this change in the experiment can be turned
into an algorithm against the prf security of HKDF and thus:

Pr(break8) ≤ Advprf
HKDF,A(λ) + Pr(break9)

Game 10 Similarly to the previous games, we replace the values tki, tkr ← HKDF(C̃10, ∅) computed by the challenger
in the execution of the test session and its honest contributive keyshare session partner πtj with uniformly random
values t̃ki, t̃kr. We do so by interacting with a prf challenger in the following way: When it is time to compute tki, tkr
in the appropriate sessions, we instead initialise a prf challenger and query it with the empty string ∅. We note
that by Game 9 that C̃10 is a uniformly random value independent from the protocol execution, and as such the
replacement is sound. If the random bit sampled by the prf challenger if 0, then we are in Game 9, but otherwise the
output of the prf challenger t̃ki, t̃kr is uniformly random and independent and we are in Game 10. Any adversary
A capable of distinguishing this change in the experiment can be turned into an algorithm against the prf security
of HKDF and thus:

Pr(break9) ≤ Advprf
HKDF,A(λ) + Pr(break10)

Since the response to the Test(i, s) query issued by the adversary is, in Game 10, uniformly random and indepen-
dent of the test bit b sampled by the challenger, then the adversary’s success in winning the key-indistinguishability
game is reduced to simply guessing and thus:

Pr(break10) = 1/2

AdveCK-PFS-PSK,C3.3
mWG,nP ,nS ,A (λ) ≤ n2

Pn
2
S

(
Advsym-ms-PRFODH

HKDF,G,q,A (λ) + 7 · Advprf
HKDF,A(λ)

)
Case 3.4: The Long-term/Ephemeral Subcase In this subcase we know that (by the definition of the cleanness
predicate cleaneCK-PFS-PSK and the subcase preconditions) that the session πsi such that the Test(i, s) session will be
queried has an honest contributive keyshare session πtj and that CorruptASK(i) and CorruptEPK(j, t) queries have not
been issued during the execution of the experiment. Note that in our proof we set that the test session has role init
and the partner session has role resp, but the case where the test session has role resp and the partner session has
role init follows analogously. In what follows, we show that in this subcase, the adversary’s probability in winning
the key-indistinguishability game is negligible under certain security assumptions.
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Game 0 This is a standard eCK-PFS-PSK game with cleanness predicate cleaneCK-PFS-PSK upheld. Thus we have:

AdveCK-PFS-PSK
mWG,nP ,nS ,A(λ) = Pr(break0)

Game 1 In this game, we guess the index (i, s) of the Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · (Pr(break1))

Game 2 In this game, we guess the index (j, t) of the honest partner session πtj (which we know exists by the Case
3 definition) and abort if, during the experiment, a query Test(i, s) is issued if the contributive keyshare session πj

∗

t∗

exists such that (j∗, t∗)neq(i, s). Thus:

Pr(break1) ≤ nPnS · (Pr(break2))

Game 3 In this game, we replace the computation of the C8 values with a uniformly random and independent value
C̃8. We do so by interacting with a sym-ms-PRFODH challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πtj such that Test(i, s)
is issued by the adversary and πtj is the honest partner of πsi . Similarly, by Game 1, we know at the beginning of
the experiment the index of the party Pi of the test session πsi . Thus, we intialise a sym-ms-PRFODH challenger, and
embed the DH challenge keyshare gu into the long-term public-key of party Pi and give gu to the adversary with all
other (honestly generated) public keys. Note that by the definition of this case, A is not able to issue a CorruptASK(i)
query, and thus will not need to reveal the private key u of the challenge DH keyshare to A. However, we must
account for all sessions such that Pi must use the private key for computations. In WireGuard, the long-term private
keys are always used in the following ways (note that for consistency we use u to indicate the long-term private key
of Pi independently of its role):

– If the party Pi is acting as the initiator:
• C4, κ4 ← HKDF(C3, g

uv′)
• C8, κ8 ← HKDF(C7, g

uy′)
– If the party Pi is acting as the responder:
• C3, κ3 ← HKDF(C2, g

x′u)
• C4, κ4 ← HKDF(C3, g

uv′)

Dealing with the challenger’s computation of these values will be done in two ways:

– x′, v′, or y′ are values that have been generated by another honest session. The challenger can then use its own
internal knowledge of x′, v′, and y′ to compute C3, κ3, C4, κ4 and C8, κ8 respectively.

– x′, v′, or y′ are values that are unknown to the challenger, as they have been generated instead by the adversary.

In these cases, the challenger must instead use the ODHv oracle provided by the sym-ms-PRFODH challenger,
specifically querying ODHu(C2, g

x′), ODHu(C3, g
v′), or ODHu(C7, g

y′) which will output ODHu(C2, g
x′u), ODHu(C3, g

uv′),
or ODHu(C7, g

uy′) using the sym-ms-PRFODH challenger’s internal knowledge of u.
In a similar fashion we embed the other DH challenge value gy into the ephemeral public-key of the partner

session πtj . The private key y will be used in the two following ways:

– C8 ← HKDF(C7, g
uy)

– C7 ← HKDF(C6, g
xy)

Taking the second case first, we compute C7 by querying the ODHy(C6, g
x) oracle provided by the sym-ms-PRFODH

challenger, which will compute HKDF(C6, g
xy) concretely, and can continue without further disruption. In the first

case, we query the sym-ms-PRFODH with the challenge salt value C7, and will return C̃8. If the test bit sampled by
the sym-ms-PRFODH challenger is 0, then C̃8 ← HKDF(C7, g

uy) and we are in Game 2. If the test bit sampled by
the sym-ms-PRFODH challenger is 1, then C̃8,

$← {0, 1}|HKDF| and we are in Game 3. Thus any adversary A capable
of distinguishing this change can be turned into a successful adversary against the sym-ms-PRFODH assumption,
and we find:

Pr(break2) ≤ Advsym-ms-PRFODH
G,q,HKDF,A (λ) + Pr(break3)
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Game 4 In this game, we replace the computation of C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9 from
the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by
interacting with a prf challenger in the following way: When it is time to compute C9, tmp, κ9 ← HKDF(C̃8, psk) we
instead initialise a prf challenger and query it with psk. We note that by Game 3 that C̃8 is a uniformly random
value and independent value, and thus this replacement is sound. If the random bit b sampled by the prf challenger
is 0, then we are in Game 3. If the random bit b sampled by the prf challenger is 1, then we are in Game 4. Any
adversary A capable of distinguishing this change in the experiment can be turned into an algorithm against the prf
security of HKDF and thus:

Pr(break3) ≤ Advprf
HKDF,A(λ) + Pr(break4)

Game 5 Similarly to the previous game, we replace the computation of C10 with a uniformly random value C̃10
from the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so
by interacting with a prf challenger in the following way: When it is time to compute C10 ← HKDF(C9, ∅) we instead
initialise a prf challenger and query it with the empty string ∅. We note that by Game 4 that C̃9 is a uniformly
random value independent from the protocol execution, and as such the replacement is sound. If the random bit b
sampled by the prf challenger is 0, then we are in Game 4. If the random bit b sampled by the prf challenger is 1,
then we are in Game 5. Any adversary A capable of distinguishing this change in the experiment can be turned
into an algorithm against the prf security of HKDF and thus:

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5)

Game 6 Similarly to the previous games, we replace the values tki, tkr ← HKDF(C̃10, ∅) computed by the challenger
in the execution of the test session and its honest contributive keyshare session partner πtj with uniformly random
values t̃ki, t̃kr. We do so by interacting with a prf challenger in the following way: When it is time to compute tki, tkr
in the appropriate sessions, we instead initialise a prf challenger and query it with the empty string ∅. We note
that by Game 5 that C̃10 is a uniformly random value independent from the protocol execution, and as such the
replacement is sound. If the random bit sampled by the prf challenger if 0, then we are in Game 5, but otherwise
the output of the prf challenger t̃ki, t̃kr is uniformly random and independent and we are in Game 6. Any adversary
A capable of distinguishing this change in the experiment can be turned into an algorithm against the prf security
of HKDF and thus:

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Since the response to the Test(i, s) query issued by the adversary is, in Game 6, uniformly random and inde-
pendent regardless of the test bit b sampled by the challenger, then the adversary’s success in winning the key-
indistinguishability game is reduced to simply guessing and thus:

Pr(break6) = 1/2

AdveCK-PFS-PSK,C3.4
mWG,nP ,nS ,A (λ) ≤ n2

Pn
2
S

(
Advsym-ms-PRFODH

HKDF,G,q,A (λ) + 3 · Advprf
HKDF,A(λ)

)

Case 3.5: The Long-terms Subcase In this subcase we know that (by the definition of cleaneCK-PFS-PSK and the
subcase preconditions) that the session πsi such that the Test(i, s) session will be queried has an honest contributive
keyshare session πtj and that CorruptASK(i) and CorruptASK(j) queries have not been issued during the execution
of the experiment. In what follows, we show that in this subcase, the adversary’s probability in winning the key-
indistinguishability game is negligible under certain security assumptions.

Game 0 This is a standard eCK-PFS-PSK game with cleanness predicate cleaneCK-PFS-PSK upheld. Thus we have:

AdveCK-PFS-PSK
mWG,nP ,nS ,A(λ) = Pr(break0)
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Game 1 In this game, we guess the index (i, s) of the Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · (Pr(break1))

Game 2 In this game, we guess the index (j, t) of the honest partner session πtj (which we know exists by the Case
3 definition) and abort if, during the experiment, a query Test(i, s) is issued if the contributive keyshare session πj

∗

t∗

exists such that (j∗, t∗) 6= (i, s). Thus:

Pr(break1) ≤ nPnS · (Pr(break2))

Game 3 In this game, we replace the computation of the C4, κ4 values with uniformly random and independent
values C̃4, κ̃4. We do so by interacting with a sym-mm-PRFODH challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of the party owner Pi of session πsi
such that Test(i, s) is issued by the adversary. Similarly, by Game 3, we know at the beginning of the experiment the
index of the intended partner Pj of the session πsi . Thus, we intialise a sym-mm-PRFODH challenger, and embed the
DH challenge keyshares gÃż, gv into the long-term public-keys of party Pi and Pj and give gu, gv to the adversary
with all other (honestly generated) public keys. Note that by the definition of this case, A is not able to issue
either a CorruptASK(i) or a CorruptASK(j) query, and thus will not need to reveal the private keys u, v of the
challenge DH keyshare to A. However, we must account for all sessions such that Pi and Pj must use the private
key for computations. In WireGuard, the long-term private keys are always used in the following ways (note that
for consistency we use u to indicate the long-term private key of party P independently of its role and identity):
– If the party P is acting as the initiator:
• C4, κ4 ← HKDF(C3, g

uv′)
• C8, κ8 ← HKDF(C7, g

uy′)
– If the party P is acting as the responder:
• C3, κ3 ← HKDF(C2, g

x′u)
• C4, κ4 ← HKDF(C3, g

uv′)
Dealing with the challenger’s computation of these values will be done in two ways:
– x′, v′, or y′ are values that have been generated by another honest session. The challenger can then use its own

internal knowledge of x′, v′, and y′ to compute C3, κ3, C4, κ4 and C8, κ8 respectively.
– x′, v′, or y′ are values that are unknown to the challenger, as they have been generated instead by the adversary.

In these cases, the challenger must instead use the ODHu (respectively ODHv) oracles provided by the sym-mm-PRFODH
challenger, specifically querying ODHu(C2, g

x′), ODHu(C3, g
v′), or ODHu(C7, g

y′) which will output ODHu(C2, g
x′u),

ODHu(C3, g
uv′), or ODHu(C7, g

uy′) using the sym-mm-PRFODH challenger’s internal knowledge of u (and similarly
for the use of the long-term private key v of party Pj).

Now we must deal with the cases where Pi and Pj interact, which will come in two following ways:
– C4, κ4 ← HKDF(C ′3, guv), where C ′3 = C3 and C3 is computed in the test session and (potentially) its honest

partner session.
– C4, κ4 ← HKDF(C ′3, guv), where C ′3 6= C3.

Dealing (unusually) with the first case first, the first time that the challenger must compute this value we query the
sym-ms-PRFODH with the challenge salt value C3, and will return C̃4, κ̃4. Any following time the challenger must
compute the values C4, κ4 we simple replace the computation of C4, κ4 with the challenge values C̃4, κ̃4, ensuring
consistency of computations through the experiment execution. Taking the second case second, we compute C4, κ4 by
querying the ODHu(C ′3, gv) oracle provided by the sym-mm-PRFODH challenger, which will compute HKDF(C ′3, guv)
as the salt value C ′3 is distinct from the challenged salt value C3, and can continue without further disruption.
Note that in the test session (and its honest partner session, if one exists) that if the test bit sampled by the
sym-mm-PRFODH challenger is 0, then C̃4, κ̃4 ← HKDF(C3, g

uv) and we are in Game 2. If the test bit sampled
by the sym-mm-PRFODH challenger is 1, then C̃4, κ̃4

$← {0, 1}|HKDF| and we are in Game 3. Thus any adversary
A capable of distinguishing this change can be turned into a successful adversary against the sym-mm-PRFODH
assumption, and we find:

Pr(break2) ≤ Advsym-mm-PRFODH
G,q,HKDF,A (λ) + Pr(break3)
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Game 4 In this game, we replace the computation of C6 with a uniformly random value C̃6 from the same
distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to compute C6 ← HKDF(C̃4, g

y) we instead initialise a
prf challenger and query it with gy. We note that by Game 3 that C̃4 is a uniformly random value and independent
value, and thus this replacement is sound. If the random bit b sampled by the prf challenger is 0, then we are in
Game 4. If the random bit b sampled by the prf challenger is 1, then we are in Game 4. Any adversary A capable
of distinguishing this change in the experiment can be turned into an algorithm against the prf security of HKDF
and thus:

Pr(break3) ≤ Advprf
HKDF,A(λ) + Pr(break4)

Game 5 In this game, we replace the computation of C7 with a uniformly random value C̃7 from the same
distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to compute C7 ← HKDF(C̃6, g

xy) we instead initialise a
prf challenger and query it with gxy. We note that by Game 4 that C̃6 is a uniformly random value and independent
value, and thus this replacement is sound. If the random bit b sampled by the prf challenger is 0, then C̃7 ←
HKDF(C̃6, g

xy) and we are in Game 4. If the random bit b sampled by the prf challenger is 1, then C̃7
$← {0, 1}|HKDF|

and we are in Game 5. Any adversary A capable of distinguishing this change in the experiment can be turned into
an algorithm against the prf security of HKDF and thus:

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5)

Game 6 Similarly to the previous game, we replace the computation of C8 with a uniformly random value C̃8 from
the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by
interacting with a prf challenger in the following way: When it is time to compute C8 ← HKDF(C̃7, g

uy) we instead
initialise a prf challenger and query it with guy. We note that by Game 5 that C̃7 is a uniformly random value
and independent value, and thus this replacement is sound. If the random bit b sampled by the prf challenger is 0,
then C8 ← HKDF(C̃7, g

uy) and we are in Game 5. If the random bit b sampled by the prf challenger is 1, then
C̃8

$← {0, 1}|HKDF| and we are in Game 6. Any adversary A capable of distinguishing this change in the experiment
can be turned into an algorithm against the prf security of HKDF and thus:

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Game 7 In this game, we replace the computation of C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9 from
the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so by
interacting with a prf challenger in the following way: When it is time to compute C9, tmp, κ9 ← HKDF(C̃8, psk) we
instead initialise a prf challenger and query it with psk. We note that by Game 6 that C̃8 is a uniformly random
value and independent value, and thus this replacement is sound. If the random bit b sampled by the prf challenger
is 0, then we are in Game 6. If the random bit b sampled by the prf challenger is 1, then we are in Game 7. Any
adversary A capable of distinguishing this change in the experiment can be turned into an algorithm against the prf
security of HKDF and thus:

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7)

Game 8 Similarly to the previous game, we replace the computation of C10 with a uniformly random value C̃10
from the same distribution, in the challenger’s execution of the test session πsi and its partner session πtj . We do so
by interacting with a prf challenger in the following way: When it is time to compute C10 ← HKDF(C9, ∅) we instead
initialise a prf challenger and query it with the empty string ∅. We note that by Game 8 that C̃9 is a uniformly
random value independent from the protocol execution, and as such the replacement is sound If the random bit b
sampled by the prf challenger is 0, then we are in Game 7. If the random bit b sampled by the prf challenger is 1,
then we are in Game 8. Any adversary A capable of distinguishing this change in the experiment can be turned
into an algorithm against the prf security of HKDF and thus:

Pr(break7) ≤ Advprf
HKDF,A(λ) + Pr(break8)
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Game 9 Similarly to the previous games, we replace the values tki, tkr ← HKDF(C̃10, ∅) computed by the challenger
in the execution of the test session and its honest contributive keyshare session partner πtj with uniformly random
values t̃ki, t̃kr. We do so by interacting with a prf challenger in the following way: When it is time to compute tki, tkr
in the appropriate sessions, we instead initialise a prf challenger and query it with the empty string ∅. We note
that by Game 8 that C̃10 is a uniformly random value independent from the protocol execution, and as such the
replacement is sound. If the random bit sampled by the prf challenger if 0, then we are in Game 8, but otherwise
the output of the prf challenger t̃ki, t̃kr is uniformly random and independent and we are in Game 9. Any adversary
A capable of distinguishing this change in the experiment can be turned into an algorithm against the prf security
of HKDF and thus:

Pr(break8) ≤ Advprf
HKDF,A(λ) + Pr(break9)

Since the response to the Test(i, s) query issued by the adversary is, in Game 9, uniformly random and indepen-
dent of the test bit b sampled by the challenger, then the adversary’s success in winning the key-indistinguishability
game is reduced to simply guessing and thus:

Pr(break9) = 1/2

AdveCK-PFS-PSK,C3.5
mWG,nP ,nS ,A (λ) ≤ n2

Pn
2
S

(
Advsym-mm-PRFODH

HKDF,G,q,A (λ) + 6 · Advprf
HKDF,A(λ)

)
6 Conclusions and Future Work

We gave a description of the WireGuard protocol, and demonstrated that it has an implicit entanglement of its
data transport phase and its key exchange (or handshake) phase. This is needed to ensure protection against KCI
attacks. In turn this means that WireGuard either cannot be proven secure as a key exchange protocol using standard
key-indistinguishability notions, or it is vulnerable to key-recovery attacks in the KCI setting. Despite this issue, we
believe that the design of WireGuard protocol is an interesting one, and our attack is intended more to make a subtle
point about the need to cleanly separate a key exchange protocol and the usage of its session keys in subsequent
protocols.

We presented the eCK-PFS-PSK security model. This amends the previous eCK-PFS model of [10] to cover key
exchange protocols such as WireGuard that combine preshared keys with long-term and ephemeral keys. We then
made a minimal set of modifications to the WireGuard handshake protocol, and proved that the modified WireGuard
protocol achieves key-indistinguishability security in our new (and strong) eCK-PFS-PSK model.

Other approaches to analysing WireGuard may also be rewarding. Instead of separately establishing the security
of the handshake and assuming it securely composes with the data transport phase, one could imagine making
a monolithic analysis similar to the ACCE approach introduced in [15]. However, this would require a different
“record layer” modelling from that used for TLS in [15] to allow for packet loss and packet reordering. One could
also implement our modification and measure its effect on the performance of WireGuard. (We expect it to be very
small.)

Finally, we made certain simplifications to simplify our analysis of WireGuard. For instance we did not model
the Cookie Reply messages that are designed to protect peers that are under load, nor did we analyse WireGuard’s
key rotation mechanisms.Given its several attractive properties, WireGuard is certainly deserving of further formal
security analysis.
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